20. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an

(Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數(shù)列{an}滿足

   (Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3

   (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

   (Ⅱ)當(dāng)的取值范圍。

查看答案和解析>>

 

一、選擇題:

  號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設(shè)“甲射擊5次,有兩次未擊中目標(biāo)”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標(biāo)的概率為            …………5分

   (Ⅱ)設(shè)“兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因?yàn)樗睦忮FP―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標(biāo)系又PA=AD=2,

<bdo id="hkawt"></bdo><style id="hkawt"></style>

        設(shè)則有

        同理可得

        即得…………………………8分

        而平面PAB的法向量可為

        故所求平面AMN與PAB所成銳二面角的大小為…………12分

        20.解:(Ⅰ)∵為奇函數(shù),

        ………………………………………2分

        的最小值為

        又直線的斜率為

        因此,

        ,  ………………………………………5分

        (Ⅱ)由(Ⅰ)知  

           ∴,列表如下:

        極大

        極小

           所以函數(shù)的單調(diào)增區(qū)間是…………8分

        ,,

        上的最大值是,最小值是………12分

        21.解:(Ⅰ)設(shè)d、q分別為數(shù)列、數(shù)列的公差與公比.

        由題可知,分別加上1,1,3后得2,2+d,4+2d

        是等比數(shù)列的前三項(xiàng),

        ……………4分

        由此可得

        …………………………6分

           (Ⅱ)

        當(dāng),

        當(dāng),

        ①―②,得

        ………………9分

        在N*是單調(diào)遞增的,

        ∴滿足條件恒成立的最小整數(shù)值為……12分

        22.解:(Ⅰ)∵雙曲線方程為

        ,

        ∴雙曲線方程為 ,又曲線C過點(diǎn)Q(2,),

        ∴雙曲線方程為    ………………5分

        (Ⅱ)∵,∴M、B2、N三點(diǎn)共線 

        ,   ∴

        (1)當(dāng)直線垂直x軸時(shí),不合題意 

        (2)當(dāng)直線不垂直x軸時(shí),由B1(0,3),B2(0,-3),

        可設(shè)直線的方程為,①

        ∴直線的方程為   ②

        由①,②知  代入雙曲線方程得

        ,得,

        解得 , ∴,

        故直線的方程為      ………………12分

         

         

         

         

         

         

         

         


        同步練習(xí)冊(cè)答案