題目列表(包括答案和解析)
函數(shù)有意義,需使,其定義域?yàn)?sub>,排除C,D,又因?yàn)?sub>,所以當(dāng)時(shí)函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m
答案:A.
【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點(diǎn)在于給出的函數(shù)比較復(fù)雜,需要對(duì)其先變形,再在定義域內(nèi)對(duì)其進(jìn)行考察其余的性質(zhì).
在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)x,即時(shí),要使的值介于0到之間,需使或∴或,區(qū)間長(zhǎng)度為,由幾何概型知的值介于0到之間的概率為.故選A.
答案:A
【命題立意】:本題考查了三角函數(shù)的值域和幾何概型問題,由自變量x的取值范圍,得到函數(shù)值的范圍,再由長(zhǎng)度型幾何概型求得.
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當(dāng)時(shí),有,當(dāng)時(shí),有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;
故使命題成立的正整數(shù)m的最大值為5
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com