(3)由AP2=AB2+BP2 BP2= BP= 查看更多

 

題目列表(包括答案和解析)

24、閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D,
求證:AP·AC+BP·BD=AB2
證明:連結(jié)AD、BC,
過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;
同理:M、C在以BP為直徑的圓上,
由割線定理得:AP·AC=AM·AB,BP·BD=BM·BA,
所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2,
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP·AC+BP·BD=AP2+BP2=AB2成立,
那么:(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP·AC+BP·BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來。

查看答案和解析>>

閱讀下面的材料:

如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,APBP的延長線分別交半圓O于點(diǎn)C、D

求證:AP?AC+BP?BD=AB2

證明:連結(jié)AD、BC,過PPMAB,則∠ADB=∠AMP=90

∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.

由割線定理得: AP?AC=AM?AB,BP?BD=BM?BA

所以,AP?AC+BP?BD=AM?AB+BM?AB=AB?(AM+BM)=AB2

 當(dāng)點(diǎn)P在半圓周上時(shí),也有AP?AC+BP?BD=AP2+BP2=AB2成立,那么:

(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP?AC+BP?BD=AB2是否成立?為什么?

(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>


同步練習(xí)冊(cè)答案