如圖.正方體的棱長為2.E為AB的中點. 查看更多

 

題目列表(包括答案和解析)

、(滿分14分)如圖,正方體的棱長為2,E為AB的中點.
(Ⅰ)求證:
(Ⅱ)求異面直線BD1與AD所成角的余弦值。

查看答案和解析>>

  如圖,正方體,棱長為a,EF分別為AB、BC上的點,且AEBFx

 。1)當x為何值時,三棱錐的體積最大?

  2)求三棱椎的體積最大時,二面角的正切值;

  (3)(理科做)求異面直線所成的角的取值范圍.

 

查看答案和解析>>

  如圖,正方體,棱長為a,E、F分別為AB、BC上的點,且AEBFx

 。1)當x為何值時,三棱錐的體積最大?

  2)求三棱椎的體積最大時,二面角的正切值;

 。3)(理科做)求異面直線所成的角的取值范圍.

 

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為2,E為AB的中點.
(Ⅰ)求證:AC⊥平面BDD1
(Ⅱ)求異面直線BD1與AD所成角的余弦值.

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1中,棱長為2,E、F分別為棱DD1、AB上的點.已知下列命題:
①AC1⊥平面B1EF;
②三角形B1EF在側(cè)面BCC1B1上的正投影是面積為定值2的三角形;
③在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
④平面B1EF與平面ABCD所成的二面角(銳角)的大小與點E的位置有關(guān),與點F的位置無關(guān).
其中,假命題有
①④
①④
(寫出所有符合要求命題的序號)

查看答案和解析>>

一、選擇題BBCAA   BBAAD  

 11、-6    12、    13、4     14、   15、

16.解:(1)在中,由,得……………………2分

又由正弦定理 ………3分   得:………………4分

(2)由余弦定理:得:……6分

,解得(舍去),所以………………8分

所以,……………10分

,即…………………… ……… ……12分

18、(本小題滿分14分)

(1)連接BD,由已知有

………………………………(1分)

又由ABCD是正方形,得:…(2分)

與BD相交,∴…………………………(3分)

(2)延長DC至G,使CG=EB,,連結(jié)BG、D1G ,

          ,∴四邊形EBGC是平行四邊形.

∴BG∥EC.   ∴就是異面直線BD1與CE所成角…………………………(5分)

中,    …………………(6分)

 

異面直線 與CE所成角的余弦值是 ……………………………(8分)

(3)∵    ∴  

又∵     ∴ 點E到的距離  ……………(9分)

有:    ,  ………………(11分)

 又由  ,  設點B到平面的距離為,

則:

有:           …………………………………(13分)

   所以:點B到平面的距離為!14分)

 

19.解:(1)由題意可知當

……3分

           每件產(chǎn)品的銷售價格為……………………………4分

∴2009年的利潤

                           ………………… 7分

      (2),……………………………11分

         (萬元)13分

        答:(略)…………………………………………………………………… 14分

20、解:(Ⅰ)圓, 半徑

QM是P的中垂線,連結(jié)AQ,則|AQ|=|QP|

  又,

根據(jù)橢圓的定義,點Q軌跡是以C(-,0),A(,0)為焦點,長軸長為2  的

橢圓,………2分

因此點Q的軌跡方程為………………4分

(Ⅱ)(1)證明:當直線l垂直x軸時,由題意知:

不妨取代入曲線E的方程得:  

即G(),H(,-)有兩個不同的交點,………………5分

當直線l不垂直x軸時,設直線l的方程為:

由題意知:

∴直線l與橢圓E交于兩點,  綜上,直線l必與橢圓E交于兩點…………8分

(2)由(1)知當直線l垂直x軸時,

………………9分

當直線l不垂直x軸時

(1)知 

…………………………10分

當且僅當,則取得“=”

……………………12分

當k=0時,   綜上,△OGH的面積的最小值為…14分

21.解:(1)在已知式中,當時,

    ∵   ∴…………2分

  當時,   ①      ②

    ①-②得,

    ∵       ∴=    ③

    ∵適合上式…………4分   當時,         ④

     ③-④得:

  ∵∴數(shù)列是等差數(shù)列,首項為1,公差為1,可得

(2)假設存在整數(shù),使得對任意 ,都有

     ∴

     ∴

⑤……………………………………………8分

)時,⑤式即為  ⑥

依題意,⑥式對都成立,∴λ<1……………………………………10分

)時,⑤式即為  ⑦

依題意,⑦式對都成立, ∴……………12分

∴存在整數(shù),使得對任意,都有…14分

 

 


同步練習冊答案