因為-.所以元. --12分∵ABC-A1B1C1是正三棱柱.∴ CC1⊥平面ABC.∵ AD⊥C1D. ∴ AD⊥BC. ∴ D是BC的中點. --3分 連結AC1與A1C相交于E點.在△A1BC中.∵D.E是中點. ∴A1B∥DE.又DE在平面AC1D內(nèi).∴A1B∥平面AC1D. --6分 查看更多

 

題目列表(包括答案和解析)

在棱長為的正方體中,是線段的中點,.

(1) 求證:^

(2) 求證://平面

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定為平行四邊形,然后,可知結論成立。

第三問中,是邊長為的正三角形,其面積為,

因為平面,所以,

所以是直角三角形,其面積為,

同理的面積為面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì),

因為,

所以,又,所以,

所以^.               ………………4分

(2)證明:連接,因為

所以為平行四邊形,因此,

由于是線段的中點,所以,      …………6分

因為,平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為

因為平面,所以

所以是直角三角形,其面積為

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>

如圖,三棱錐中,側面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

中,滿足,邊上的一點.

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點.,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數(shù)量積設向量與向量的夾角為,則

=,得,又,則為所求

第二問因為,=m所以,

(1)當時,則= 

(2)當時,則=

第三問中,解:設,因為,;

所以于是

從而

運用三角函數(shù)求解。

(Ⅰ)解:設向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因為,=m所以

(1)當時,則=;-2分

(2)當時,則=;--2分

(Ⅲ)解:設,因為,;

所以于是

從而---2

==

=…………………………………2

,則函數(shù),在遞減,在上遞增,所以從而當時,

 

查看答案和解析>>

在數(shù)學證明中,①假言推理、②三段論推理、③傳遞關系推理、④完全歸納推理,是經(jīng)常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的(     )如(右圖)

因為lAB,所以又因為AB//CD,所以

 所以

A. ①②③        B.②③④

C. ②③          D.①②③④

 

查看答案和解析>>

請先閱讀:
設平面向量=(a1,a2),=(b1,b2),且的夾角為θ,
因為=||||cosθ,
所以≤||||.

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.

查看答案和解析>>


同步練習冊答案