(Ⅱ)由題知.整理得 查看更多

 

題目列表(包括答案和解析)

(2013•安徽)某高校數(shù)學(xué)系計(jì)劃在周六和周日各舉行一次主題不同的心理測(cè)試活動(dòng),分別由李老師和張老師負(fù)責(zé),已知該系共有n位學(xué)生,每次活動(dòng)均需該系k位學(xué)生參加(n和k都是固定的正整數(shù)),假設(shè)李老師和張老師分別將各自活動(dòng)通知的信息獨(dú)立、隨機(jī)地發(fā)給該系k位學(xué)生,且所發(fā)信息都能收到,記該系收到李老師或張老師所發(fā)活動(dòng)通知信息的學(xué)生人數(shù)為X.
(I)求該系學(xué)生甲收到李老師或張老師所發(fā)活動(dòng)通知信息的概率;
(II)求使P(X=m)取得最大值的整數(shù)m.

查看答案和解析>>

(本題滿分12分)已知函數(shù)定義域是,且,

,當(dāng)時(shí):。

⑴ 判斷的奇偶性,并說(shuō)明理由;

    ⑵ 求上的表達(dá)式;

⑶ 是否存在正整數(shù),使得時(shí),有解,并說(shuō)明理由。

查看答案和解析>>

(本題滿分12分)

為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

5

女生

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;

(3)已知喜愛(ài)打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (參考公式:,其中)

查看答案和解析>>

(本題滿分14分)已知數(shù)列中,且點(diǎn)在直線上.   (1)求數(shù)列的通項(xiàng)公式;   (2)若函數(shù)求函數(shù)的最小值;   (3)設(shè)表示數(shù)列的前項(xiàng)和.試問(wèn):是否存在關(guān)于的整式,使得對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說(shuō)明理由.

查看答案和解析>>


(本題滿分15分)已知數(shù)列中,,n∈N*),
  (1)試證數(shù)列是等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)在數(shù)列{}中,求出所有連續(xù)三項(xiàng)成等差數(shù)列的項(xiàng);
(3)在數(shù)列{}中,是否存在滿足條件1<rs的正整數(shù)r s ,使得b1,br,bs成等差數(shù)列?若存在,確定正整數(shù)rs之間的關(guān)系;若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案