(Ⅱ)設直線過點且與軌跡有兩個不同的交點求直線的斜率的取值范圍, 查看更多

 

題目列表(包括答案和解析)

(2013•石家莊二模)在平面直角坐標系中,已知點F(0,1),直線l:y=-1,P為平面內動點,過點P作直線l的垂線,垂足為Q,且
QF
•(
QP
+
FP
)=0

(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)過點M(0,m)(m>0)的直線AB與曲線E交于A、B兩個不同點,設∠AFB=θ,若對于所有這樣的直線AB,都有θ∈(
π
2
,π].求m的取值范圍.

查看答案和解析>>

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量
a
=(1,k)(k≠0)
的直線l,使得l與曲線C交與兩個不同的點M,N,且有|
AM
|=|
AN
|
?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量數學公式的直線l,使得l與曲線C交與兩個不同的點M,N,且有數學公式?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1),
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量的直線l,使得l與曲線C交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由。

查看答案和解析>>

已知點P為圓周x2+y2=4的動點,過P點作PH⊥x軸,垂足為H,設線段PH的中點為E,記點E的軌跡方程為C,點A(0,1)
(1)求動點E的軌跡方程C;
(2)若斜率為k的直線l經過點A(0,1)且與曲線C的另一個交點為B,求△OAB面積的最大值及此時直線l的方程;
(3)是否存在方向向量的直線l,使得l與曲線C交與兩個不同的點M,N,且有?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案