當時.函數(shù)存在單調(diào)減區(qū)間.為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex+ax2,其中a為實常數(shù).
(1)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=-2時,求證:f(x)有3個零點;
(3)設(shè)y=g(x)為f(x)在x0處的切線,若“?x≠x0,(f(x)-g(x))(x-x0)>0”,則稱x0為f(x)的一個優(yōu)美點,是否存在實數(shù)a,使得x0=2是f(x)的一個優(yōu)美點?說明理由.(參考數(shù)據(jù):e≈2.718)

查看答案和解析>>

已知函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過點(
π
6
,0),(
π
3
,1)

(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)當x∈R時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)若x∈[0,
π
2
],是否存在實數(shù)m使函數(shù)g(x)=
3
f(x)+m2
的最大值為4?若存在,求出實數(shù)m的值,若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
a
x
+x+(a-1)lnx+15a
,F(xiàn)(x)=2x3-3(2a+3)x2+12(a+1)x+12a+2,其中a<0且a≠-1.
(Ⅰ) 當a=-2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 若x=-1時,函數(shù)F(x)有極值,求函數(shù)F(x)圖象的對稱中心的坐標;
(Ⅲ)設(shè)函數(shù)g(x)=
F(x),x≤1
f(x),x>1
(e是自然對數(shù)的底數(shù)),是否存在a使g(x)在[a,-a]上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案