已知動點P與雙曲線的兩個焦點F1.F2的距離之和為定值2a(a>).且cos∠F1PF2的最小值為.(1)求動點P的軌跡方程,.M.N在動點P的軌跡上.且=λ.求實數(shù)λ的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
已知動圓P過點并且與圓相外切,動圓圓心P的軌跡為W,過點N的直線與軌跡W交于A、B兩點。
(Ⅰ)求軌跡W的方程;   (Ⅱ)若,求直線的方程;
(Ⅲ)對于的任意一確定的位置,在直線上是否存在一點Q,使得,并說明理由。

查看答案和解析>>

(本小題滿分12分)
已知動圓P過點并且與圓相外切,動圓圓心P的軌跡為W,過點N的直線與軌跡W交于A、B兩點。
(Ⅰ)求軌跡W的方程;   (Ⅱ)若,求直線的方程;
(Ⅲ)對于的任意一確定的位置,在直線上是否存在一點Q,使得,并說明理由。

查看答案和解析>>

(本小題滿分12分)

已知橢圓(a>b>0)的離心率為,以原點為圓心。橢圓短半軸長半徑的

圓與直線y=x+2相切,

(Ⅰ)求a與b;w.w.w.k.s.5.u.c.o.m       

(Ⅱ)設(shè)該橢圓的左,右焦點分別為,直線且與x軸垂直,動直線與y軸垂直,與點p..求線段P垂直平分線與的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

(本小題滿分12分) 已知橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點分別是F1和F2,直線且與x軸垂直,動直線軸垂直,于點P,求線段PF1的垂直平分線與的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

(本小題滿分12分)已知定點和直線,過定點F與直線相切的動圓圓心為點C。 (1)求動點C的軌跡方程;   (2)過點F在直線l2交軌跡于兩點P、Q,交直線l1于點R,求的最小值。

查看答案和解析>>

一、選擇題

ADBBD  ABBAD

二、填空題

11、        12、          13、C      14、21           15、          16、(-,0)

三、解答題

17、解:(1)    4分

f(x)的最小值為3

所以-a+=3,a=2

f(x)=-2sin(2x+)+5                                  6分

(2)因為(-)變?yōu)榱?),所以h=,k=-5

由圖象變換得=-2sin(2x-)            8分

由2kp+≤2x-≤2kp+    得kp+≤x≤kp+  所以單調(diào)增區(qū)間為

[kp+, kp+](k∈Z)       13分

18、解:(1)如圖,在四棱錐中,

BCAD,從而點D到平面PBC間的距離等于點A

到平面PBC的距離.         2分

∵∠ABC=,∴AB⊥BC,

PA⊥底面ABCD,∴PA⊥BC,

BC⊥平面  PAB,                 4分

∴平面PAB⊥平面PBC,交線為PB,

AAEPB,垂足為E,則AE⊥平面PBC,

∴AE的長等于點D到平面PBC的距離.

,∴

即點D到平面PBC的距離為.                 6分

(2)依題意依題意四棱錐P-ABCD的體積為,

∴(BC+AD)AB×PA=,∴,                 8分

平面PDC在平面PAB上的射影為PAB,SPAB=,         10分

PC=,PD=,DC=,SPDC=a2,           12分

設(shè)平面PDC和平面PAB所成二面角為q,則cosq==

q=arccos.    13分

19、解:(1)從10 道不同的題目中不放回地隨機抽取3次,每次只抽取1道題,抽法總數(shù)為只有第一次抽到藝術(shù)類數(shù)目的抽法總數(shù)為

                                   5分

(2)抽到體育類題目的可能取值為0,1,2,3則

    

的分布列為

0

1

2

3

 

P

10分

                         11分

從而有                   13分

20、解:(1)設(shè)在公共點處的切線相同

                         1分

由題意知       ,∴    3分

得,,或(舍去)

即有                                        5分

(2)設(shè)在公共點處的切線相同

由題意知    ,∴

得,,或(舍去)      7分

即有            8分

,則,于是

當(dāng),即時,;

當(dāng),即時,                 11分

的最大值為,故的最大值為   13分

21、解:(1)∵且|PF1|+|PF2|=2a>|F1F2|(a>)

∴P的軌跡為以F1、F2為焦點的橢圓E,可設(shè)E:(其中b2=a2-5)    2分

在△PF1F2中,由余弦定理得

∴當(dāng)且僅當(dāng)| PF1 |=| PF2 |時,| PF1 |?| PF2 |取最大值,         4分

此時cos∠F1PF2取最小值

令=a2=9

∵c ∴b2=4故所求P的軌跡方程為           6分

(2)設(shè)N(s,t),M(xy),則由,可得(x,y-3)=λ(s,t-3)

x=λs,y=3+λ(t-3)           7分

而M、N在動點P的軌跡上,故且

消去S得解得        10分

又| t |≤2,∴,解得,故λ的取值范圍是[,5]      12分

22、解:(1)由,得,代入,得

整理,得,從而有,

是首項為1,公差為1的等差數(shù)列,.          4分

(2),  ,

,

.                  8分

(3)∵

.

由(2)知,,

.     12分

 


同步練習(xí)冊答案