2.已知.則的最小值 A.15 B.6 C.60 D.1 查看更多

 

題目列表(包括答案和解析)

已知滿足,則的最小值為( )

A.6                B.8                C.12               D.15

 

查看答案和解析>>

已知是大小為45°的二面角,C為二面角內(nèi)一定點,且到半平面的距離分別為和6,A、B分別是半平面內(nèi)的動點,則△ABC周長的最小值為

    A. B. C.15   D.

 

查看答案和解析>>

已知是大小為45°的二面角,C為二面角內(nèi)一定點,且到半平面的距離分別為和6,A、B分別是半平面內(nèi)的動點,則△ABC周長的最小值為
A. B. C.15   D.

查看答案和解析>>

(08年濱州市質(zhì)檢三理) 已知奇函數(shù)在[3,7]上是增函數(shù),在[3,6]上的最大值為8,最小值為―1,則=              (    )

    A.―15           B.―13           C.―5            D.5

查看答案和解析>>

已知實數(shù)x,y滿足且z=x+2y,若z的最小值的取值范圍為[0,2],則z的最大值的取值范圍是( )
A.[4,7]
B.[,5]
C.[11,15]
D.[3,6]

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1.A  2.C  3.C  4.A   5.C   6.C  7.B  8.C   9.D  10.D   11.D  12.D

二、填空題:本大題共4小題,每小題4分,共16分.

13.   14.    15.     16.40

三、解答題:本大題共6小題,共74分解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.解:

,聯(lián)合

,即

當(dāng)時,

當(dāng)時,

∴當(dāng)時,

當(dāng)時,

18.解:由題意可知,這個幾何體是直三棱柱,且AC⊥BC,AC=BC=CC1.

   (1)連結(jié)AC1,AB1.

    由直三棱柱的性質(zhì)得AA1⊥平面A1B1C1,所以AA1⊥A1B1,則四邊形ABB1A1為短形.

    由矩形性質(zhì)得AB1過A1B的中點M.

在△AB1C1中,由中位線性質(zhì)得MN//AC1

    又AC1平面ACC1A1,MN平面ACC1A1,

所以MN//平面ACC1A1

   (2)因為BC⊥平面ACC1A1,AC平面ACC1A1,所以BC⊥AC1.

在正方形ACC1A1中,A1C⊥AC1.

又因為BC∩A1C=C,所以AC1⊥平面A1BC.

由MN//AC1,得MN⊥平面A1BC

19.解:(1)基本事件空間與點集中                                     

的元素一一對應(yīng). 

    因為S中點的總數(shù)為5×5=25(個),所以基本事侉總數(shù)為n=25

    事件A包含的基本事件數(shù)共5個:

    (1,5)、(2,4)、(3,3)、(4,2)、(5,1),

所以

   (2)B與C不是互斥事件.因為事件B與C可以同時發(fā)生,如甲贏一次,乙贏兩次的事件即符合題意

   (3)這種游戲規(guī)則不公平.由 (Ⅰ)知和為偶數(shù)的基本事件數(shù)為13個:

(1,1)、(1,3)、(1,5)、(2,2)、(2,4)、(3,1)、(3,3)、(3,5)、(4,2)、(4,4)、(5,1)、 (5,3)、(5,5)

所以甲贏的概率為,乙贏的概率為,

    所以這種游戲規(guī)則不公平.

20.(1)依題意,點的坐標(biāo)為,可設(shè),

直線的方程為,與聯(lián)立得

消去

由韋達(dá)定理得,

于是

,

*   當(dāng),

   (2)假設(shè)滿足條件的直線存在,其方程為,

設(shè)的中點為,為直徑的圓相交于點,的中點為

,點的坐標(biāo)為

,

,

,

,得,此時為定值,故滿足條件的直線存在,其方程為,即拋物線的通徑所在的直線.

21.解:(1)當(dāng)時,

,∴上是減函數(shù).

   (2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當(dāng)時,  不恒成立;

當(dāng)時,不等式恒成立,即,∴.

當(dāng)時,不等式不恒成立. 綜上,的取值范圍是.

22.解:(1)∵ 的橫坐標(biāo)構(gòu)成以為首項,為公差的等差數(shù)列

.

位于函數(shù)的圖象上,

,

∴ 點的坐標(biāo)為.

   (2)據(jù)題意可設(shè)拋物線的方程為:,

∵ 拋物線過點(0,),

,

  ∴

∵ 過點且與拋物線只有一個交點的直線即為以為切點的切線,

),

   (3)∵    ,

中的元素即為兩個等差數(shù)列中的公共項,它們組成以為首項,以為公差的等差數(shù)列.

,且成等差數(shù)列,中的最大數(shù),

,其公差為

*當(dāng)時,

此時    ∴ 不滿足題意,舍去.

*當(dāng)時,,

此時,

當(dāng)時,

此時, 不滿足題意,舍去.

綜上所述,所求通項為

 

 

 


同步練習(xí)冊答案