16.為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況.抽查了該地區(qū)100名年齡為17.5―18歲的男生體重(┧).得到頻率分布直方圖如下: 查看更多

 

題目列表(包括答案和解析)

43、為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17歲~18歲的男生體重(kg),得到頻率分布直方圖如下.根據(jù)下圖可得這100名學(xué)生中體重在[56.5,64.5]的學(xué)生人數(shù)是
40

查看答案和解析>>

3、為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲-18歲的男生體重(kg),得到頻率分布直方圖如圖.根據(jù)圖可得這100名學(xué)生中體重在〔56.5,64.5〕的學(xué)生人數(shù)是( 。

查看答案和解析>>

為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)若干年齡在17歲-18歲的男生的體重(kg),得到了如下頻率分布直方圖.已知體重在[62.5,64.5]內(nèi)的男生為8人,則所抽取的樣本容量為( 。精英家教網(wǎng)
A、50B、75C、100D、150

查看答案和解析>>

為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查該地區(qū)200名年齡為17.5歲-18歲的男生體重(kg),得到頻率分布直方圖如下,根據(jù)下圖可得這200名學(xué)生中體重在[56.5,64.5]的學(xué)生人數(shù)是
80
80

查看答案和解析>>

為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了地區(qū)內(nèi)100名年齡為17.5~18歲的男生的體重情況,結(jié)果如下:(單位:kg)

56.5

69.5

65

61.5

64.5

66.5

64

64.5

76

58.5

72

73.5

56

67

70

57.5

65.5

68

71

75

62

68.5

62.5

66

59.5

63.5

64.5

67.5

73

68

55

72

66.5

74

63

6.

55.5

70

64.5

58

64

70.5

57

62.5

65

69

71.5

73

62

58

76

71

66

63.5

56

59.5

63.5

65

70

74.5

68.5

64

55.5

72.5

66.5

68

76

57.5

6.

71.5

57

69.5

74

64.5

59

61.5

67

68

63.5

58

59

65.5

62.5

69.5

72

64.5

75.5

68.5

64

62

65.5

58.5

67.5

70.5

65

66

66.5

70

63

59.5

    試根據(jù)上述數(shù)據(jù)畫(huà)出樣本的頻率分布直方圖,并對(duì)相應(yīng)的總體分布作出估計(jì)。

   

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1.A  2.C  3.C  4.A   5.C   6.C  7.B  8.C   9.D  10.D   11.D  12.D

二、填空題:本大題共4小題,每小題4分,共16分.

13.   14.    15.     16.40

三、解答題:本大題共6小題,共74分解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

17.解:

,聯(lián)合

,即

當(dāng)時(shí),

當(dāng)時(shí),

∴當(dāng)時(shí),

當(dāng)時(shí),

18.解:由題意可知,這個(gè)幾何體是直三棱柱,且AC⊥BC,AC=BC=CC1.

   (1)連結(jié)AC1,AB1.

    由直三棱柱的性質(zhì)得AA1⊥平面A1B1C1,所以AA1⊥A1B1,則四邊形ABB1A1為短形.

    由矩形性質(zhì)得AB1過(guò)A1B的中點(diǎn)M.

在△AB1C1中,由中位線(xiàn)性質(zhì)得MN//AC1

    又AC1平面ACC1A1,MN平面ACC1A1

所以MN//平面ACC1A1

   (2)因?yàn)锽C⊥平面ACC1A1,AC平面ACC1A1,所以BC⊥AC1.

在正方形ACC1A1中,A1C⊥AC1.

又因?yàn)锽C∩A1C=C,所以AC1⊥平面A1BC.

由MN//AC1,得MN⊥平面A1BC

19.解:(1)基本事件空間與點(diǎn)集中                                     

的元素一一對(duì)應(yīng). 

    因?yàn)镾中點(diǎn)的總數(shù)為5×5=25(個(gè)),所以基本事侉總數(shù)為n=25

    事件A包含的基本事件數(shù)共5個(gè):

    (1,5)、(2,4)、(3,3)、(4,2)、(5,1),

所以

   (2)B與C不是互斥事件.因?yàn)槭录﨎與C可以同時(shí)發(fā)生,如甲贏一次,乙贏兩次的事件即符合題意

   (3)這種游戲規(guī)則不公平.由 (Ⅰ)知和為偶數(shù)的基本事件數(shù)為13個(gè):

(1,1)、(1,3)、(1,5)、(2,2)、(2,4)、(3,1)、(3,3)、(3,5)、(4,2)、(4,4)、(5,1)、 (5,3)、(5,5)

所以甲贏的概率為,乙贏的概率為

    所以這種游戲規(guī)則不公平.

20.(1)依題意,點(diǎn)的坐標(biāo)為,可設(shè),

直線(xiàn)的方程為,與聯(lián)立得

消去

由韋達(dá)定理得,

于是

*   當(dāng),

   (2)假設(shè)滿(mǎn)足條件的直線(xiàn)存在,其方程為,

設(shè)的中點(diǎn)為,為直徑的圓相交于點(diǎn),的中點(diǎn)為

,點(diǎn)的坐標(biāo)為

,

,

,

,得,此時(shí)為定值,故滿(mǎn)足條件的直線(xiàn)存在,其方程為,即拋物線(xiàn)的通徑所在的直線(xiàn).

21.解:(1)當(dāng)時(shí),

,∴上是減函數(shù).

   (2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當(dāng)時(shí),  不恒成立;

當(dāng)時(shí),不等式恒成立,即,∴.

當(dāng)時(shí),不等式不恒成立. 綜上,的取值范圍是.

22.解:(1)∵ 的橫坐標(biāo)構(gòu)成以為首項(xiàng),為公差的等差數(shù)列

.

位于函數(shù)的圖象上,

,

∴ 點(diǎn)的坐標(biāo)為.

   (2)據(jù)題意可設(shè)拋物線(xiàn)的方程為:,

∵ 拋物線(xiàn)過(guò)點(diǎn)(0,),

,

  ∴

∵ 過(guò)點(diǎn)且與拋物線(xiàn)只有一個(gè)交點(diǎn)的直線(xiàn)即為以為切點(diǎn)的切線(xiàn),

),

   (3)∵    ,

中的元素即為兩個(gè)等差數(shù)列中的公共項(xiàng),它們組成以為首項(xiàng),以為公差的等差數(shù)列.

,且成等差數(shù)列,中的最大數(shù),

,其公差為

*當(dāng)時(shí),,

此時(shí)    ∴ 不滿(mǎn)足題意,舍去.

*當(dāng)時(shí),,

此時(shí)

當(dāng)時(shí),

此時(shí), 不滿(mǎn)足題意,舍去.

綜上所述,所求通項(xiàng)為

 

 

 


同步練習(xí)冊(cè)答案