12.設(shè)函數(shù)在定義域為D.如果對任意的.存在唯一的.使(C為常數(shù))成立.則稱函數(shù)在D上的均值為C. 給出下列四個函數(shù):①y=x3,②y=4sinx,③y=lgx,④y=2x.則滿足在其定義域上的均值為2的所有函數(shù)是 A.①② B.③④ C.②④ D.①③ 第II卷(非選擇題 共90分) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)的定義域為D,如果對于任意的,存在唯一的,使得成立(其中C為常數(shù)),則稱函數(shù)在D上的約算術(shù)均值為C,則下列函數(shù)在其定義域上的算術(shù)均值可以為2的函數(shù)是                                         (    )

       A.                  B.            C.                D.

查看答案和解析>>

設(shè)函數(shù)的定義域為D,如果對于任意的,存在唯一的,使得成立(其中C為常數(shù)),則稱函數(shù)在D上的約算術(shù)均值為C,則下列函數(shù)在其定義域上的算術(shù)均值可以為2的函數(shù)是                                         (    )

       A.    B.     C.  D.

查看答案和解析>>

設(shè)函數(shù)的定義域為D,如果對于任意的,存在唯一的,使得成立(其中C為常數(shù)),則稱函數(shù)在D上的約算術(shù)均值為C,則下列函數(shù)在其定義域上的算術(shù)均值可以為2的函數(shù)是    (    )

A.   B.   C. D.

 

查看答案和解析>>

設(shè)函數(shù)的定義域為D,如果對于任意的,存在唯一的,使得成立(其中C為常數(shù)),則稱函數(shù)在D上的約算術(shù)均值為C,則下列函數(shù)在其定義域上的算術(shù)均值可以為2的函數(shù)是 (   )

A.B.C.D.

查看答案和解析>>

設(shè)函數(shù)的定義域為D,如果對于任意的,存在唯一的,使(c為常數(shù))成立,則稱函數(shù)在D上的均值為c.下列五個函數(shù):①滿足在其定義域上均值為2的所有函數(shù)的序號是       

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖).

  1.        P(0,0,a),F,,).………………2分

       (I)

           …………………………………………4分

    文本框:     (II)設(shè)平面DEF的法向量為

           得

           取x=1,則y=-2,z=1.

           ………………………………………………6分

          

           設(shè)DB與平面DEF所成角為……………………………………8分

       (III)假設(shè)存在點G滿足題意

           因為

          

           ∴存在點G,其坐標為(,0,0),即G點為AD的中點.……………………12分

    19.(本小題滿分12分)

           解:(I)ξ的所有可能取值為0,1,2,依題意得:

           …………3分

           ∴ξ的分布列為

          

    ξ

    0

    1

    2

    P

           ∴Eξ=0×+1×+2×=1.…………………………………………4分

       (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

           ∴所求概率為…………………………………8分

       (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

           ………………………………10分

           ……………12分

    20.(本小題滿分12分)

           解:(I)由題意知

           是等差數(shù)列.…………………………………………2分

          

           ………………………………5分

       (II)由題設(shè)知

          

           是等差數(shù)列.…………………………………………………………8分

          

           ………………………………10分

           ∴當n=1時,

           當

           經(jīng)驗證n=1時也適合上式. …………………………12分

    21.(本小題滿分12分)

           解:(I)令

           則

           是單調(diào)遞減函數(shù).……………………………………2分

           又取

           在其定義域上有唯一實根.……………………………4分

       (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

          

           滿足條件②.故是集合M中的元素.……………………………7分

       (III)不妨設(shè)在其定義域上是增函數(shù).

           ………………………………………………………………8分

           是其定義域上的減函數(shù).

           .………………10分

          

           …………………………………………12分

    22.(本小題滿分14分)

           解:(I)設(shè)

           由

           ………………………………………………2分

           又

          

           同理,由………………………………4分

           …………6分

       (II)方法一:當m=0時,A(2,2),B(2,-),Dn,2),En,-2).

           ∵ABED為矩形,∴直線AE、BD的交點N的坐標為(………………8分

           當

          

           同理,對、進行類似計算也得(*)式.………………………………12分

           即n=-2時,N為定點(0,0).

           反之,當N為定點,則由(*)式等于0,得n=-2.…………………………14分

           方法二:首先n=-2時,則D(-2,y1),A

             ①

             ②…………………………………………8分

           ①-②得

          

           …………………………………………………………10分

           反之,若N為定點N(0,0),設(shè)此時

           則

           由D、N、B三點共線,   ③

           同理E、NA三點共線, ④………………12分

           ③+④得

           即-16m+8m4m=0,m(n+2)=0.

           故對任意的m都有n=-2.……………………………………………………14分

     

     

     


    同步練習冊答案