故為等比數(shù)列.且. 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

 故

,又由題設(shè)    從而

第二問(wèn)中,

當(dāng)時(shí),,時(shí)

時(shí), 

時(shí),

分別討論得到結(jié)論。

由題設(shè)可知

 故

,又由題設(shè)   

從而……………………4分

(2)

當(dāng)時(shí),,時(shí)……………………6分

時(shí),……8分

時(shí),

 ……………………10分

綜上可得 

 

查看答案和解析>>

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問(wèn)中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問(wèn)中,,由第一問(wèn)中知道,然后利用裂項(xiàng)求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分

 

查看答案和解析>>

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

(1)求函數(shù)f(x)的表達(dá)式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

 [番茄花園1] 本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

已知數(shù)列的前項(xiàng)和為,且,

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。

同理可得,當(dāng)n≤15時(shí),數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時(shí),Sn取得最小值.

 


 [番茄花園1]20.

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案