題目列表(包括答案和解析)
3 |
4 |
3 |
4 |
在等比數列
(1)求數列{an}的通項公式;
(2)求數列{an}的前5項的和
(3)若,求Tn的最大值及此時n的值.
在等比數列
(1)求數列{an}的通項公式;
(2)求數列{an}的前5項的和;
(3)若,求Tn的最大值及此時n的值.
一、選擇題:本大題共10小題,每小題5分,共50分.
CABCA,BCDDC
二、填空題:本大題共5小題,每小題5分 ,共25分,
11. 12; 12. ; 13. 8; 14. x-2y-z+3=0; 15. ②④.
三、解答題:本大題共6小題,共75分. 解答應寫出文字說明,證明過程或演算步驟.
16.解:(Ⅰ) 由已知 , ∴ ,
又 ΔABC是銳角三角形, ∴ ………………………………6分
(Ⅱ)
………………………………12分
17.解法一:(Ⅰ)∵,
且 ∴ , ……………………3分
∵
∴ ……………………6分
(Ⅱ)取的中點,則,連結,
∵,∴,從而
作,交的延長線于,連結,則由三垂線定理知, AC⊥MH,
從而為二面角的平面角 …………………8分
直線與直線所成的角為,∴ …………………9分
在中,由余弦定理得
在中,
在中,
在中,
故二面角的平面角大小為 …………………12分
解法二:(Ⅰ)同解法一
(Ⅱ)在平面內,過作,建立空間直角坐標系(如圖)
由題意有,設,
則 ………5分
由直線與直線所成的角為,得
,即,解得………7分
∴,設平面的一個法向量為,
則,取,得 ……………9分
又 平面的法向量取為 ……………10分
設與所成的角為,則,
故二面角的平面角大小為 ……………12分
18. 解:(I)記“幸運觀眾獲得獎金5000元”為事件M,即前兩個問題選擇回答A、C且答對,最后在回答問題B時答錯了.
故 幸運觀眾獲得獎金5000元的概率為 ………………6分
(II) 設幸運觀眾按A→B→C順序回答問題所得獎金數為隨機變量ξ,則ξ的取值可以為0元、1000元、3000元和7000元,其分布列為
0
1000
3000
7000
P
∴ 元. ………………9分
設幸運觀眾按C→B→A順序回答問題所得獎金數為隨機變量η,則η的取值可以為0元、4000元、6000元和7000元,其分布列為
η
0
4000
6000
7000
P
∴ 元. ……11分
故 乙觀眾的選擇所獲獎金期望較大. ………………12分
19.解:(1)∵ ……………………2分
由已知對恒成立,即對恒成立
又 ∴ 為所求 …………………………5分
(2)取, ∵ , ∴
由已知在上是增函數,即,
也就是 即 …………8分
另一方面,設函數,則
∴ 在上是增函數,又
∴ 當時,
∴ ,即
綜上所述,………………………………………………13分
20.解:(Ⅰ) 由題意可知,平面區(qū)域如圖陰影所示. …3分
設動點為,則
,即.
由 知,x-y<0,即x2-y2<0.
所以 y2-x2=4(y>0),即為曲線的方程 …………6分
(Ⅱ)設,,則以線段為直徑的圓的圓心為.
因為以線段為直徑的圓與軸相切,所以半徑 ,
即 ………………………8分
因為直線AB過點,當AB ^ x軸時,不合題意.
所以設直線AB的方程為 y=k(x-2).
代入雙曲線方程y2-x2=4 (y>0)得: (k2-1)x2-4k2x+(8k2-4)=0.
因為直線l與雙曲線交于A,B兩點,所以k≠±1.于是
x1+x2=,x1x2=.
∴ |AB|=
∴
化簡得:k4+2k2-1=0 ……………………………11分
解得: k2=-1 (k2=--1不合題意,舍去).
由△=(4k2)2-4(k2-1)(8k2-4)=3k2-1>0,又由于y>0,所以-1<k<- .
所以直線l存在,其斜率為 k=-. …………………13分
21. 解:(1) 因為 ,所以,
于是: , 即是以2為公比的等比數列.
|