已知:O.A.B.C是不共線(xiàn)的四點(diǎn).若存在一組正實(shí)數(shù)...使.則三個(gè)角∠AOB.∠BOC.∠COA中 A.有一個(gè)鈍角 B.至少有兩個(gè)鈍角 C.至多有兩個(gè)鈍角 D.沒(méi)有鈍角 查看更多

 

題目列表(包括答案和解析)

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線(xiàn)l,過(guò)A作l的垂線(xiàn)AD,AD分別與直線(xiàn)l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線(xiàn)段AE的長(zhǎng).
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個(gè)特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線(xiàn)C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線(xiàn)l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線(xiàn)C上點(diǎn)M到直線(xiàn)l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)使它不成立的x的值.

查看答案和解析>>

已知非零向量
OA
、
OB
、
OC
、
OD
滿(mǎn)足:
OA
OB
OC
OD
(α,β,γ∈R)
,B、C、D為不共線(xiàn)三點(diǎn),給出下列命題:
①若α=
3
2
,β=
1
2
,γ=-1
,則A、B、C、D四點(diǎn)在同一平面上;
②當(dāng)α>0,β>0,γ=
2
時(shí),若|
OA
|=
3
|
OB
|=|
OC
|=|
OD
|=1
,
OB
,
OC
>=
6
,
OD
,
OB
>=<
OD
,
OC
>=
π
2
,則α+β的最大值為
6
-
2
;
③已知正項(xiàng)等差數(shù)列an(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三點(diǎn)共線(xiàn),但O點(diǎn)不在直線(xiàn)BC上,則
1
a3
+
4
a2008
的最小值為9;
④若α+β=1(αβ≠0),γ=0,則A、B、C三點(diǎn)共線(xiàn)且A分
BC
所成的比λ一定為
α
β

其中你認(rèn)為正確的所有命題的序號(hào)是
 

查看答案和解析>>

已知點(diǎn)是F拋物線(xiàn)C 1x2=4y與橢圓C 2
y2
a2
+
x2
b2
=1(a>b>0)
的公共焦點(diǎn),且橢圓的離心率為
1
2

(1)求橢圓的方程;
(2)過(guò)拋物線(xiàn)上一點(diǎn)P,作拋物線(xiàn)的切線(xiàn)l,切點(diǎn)P在第一象限,如圖,設(shè)切線(xiàn)l與橢圓相交于不同的兩點(diǎn)A、B,記直線(xiàn)OP,F(xiàn)A,F(xiàn)B的斜率分別為k,k1,k2(其中O為坐標(biāo)原點(diǎn)),若k 1+k2=
20
3
k
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知A、B、C是直線(xiàn)l上的不同的三點(diǎn),O是外一點(diǎn),則向量
OA
、
OB
、
OC
滿(mǎn)足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點(diǎn)共線(xiàn)且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對(duì)任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知雙曲線(xiàn)的中心在原點(diǎn)O,其中一條準(zhǔn)線(xiàn)方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線(xiàn)L:y=kx+3與雙曲線(xiàn)交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線(xiàn)L:y=kx+3與雙曲線(xiàn)交于A、B兩點(diǎn),C是直線(xiàn)L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線(xiàn))試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題(本大題共10小題,每小題5分,共50分;每個(gè)小題給出四個(gè)選項(xiàng),只有一項(xiàng)符合要求)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

B

D

B

B

B

A

D

二、填空題(本大題共5個(gè)小題,每小題5分,共25分)。

11、;12、;13、;14、();15、①③④

三、解答題(本大題共6小題,共75分,解答題應(yīng)寫(xiě)出必要的文字說(shuō)明,證明過(guò)程或演算步驟).

16.解:(1)經(jīng)過(guò)各交叉路口遇到紅燈,相當(dāng)于獨(dú)立重復(fù)試驗(yàn),∴恰好遇到3次紅燈概率為……………………………………………………(6分)

   (2)記“經(jīng)過(guò)交叉路口遇到紅燈”事件為A,張華在第1、2個(gè)交叉路口未遇到紅燈,在第3個(gè)交叉路口遇到紅燈的概率為:

………………………………………………………(12分)

17.解:(1)∵

,∴ ……………………………………………………2分

的等比中項(xiàng)為2,∴

,∴,∴…………………………………4分

………………………………………………………6分

(2)……………………………………………………8分

………………………………………………………………10分

  ………………………………………………………12分

18.(1)解:由

 

    ∴ 

    ∴……………………………………………8分

(2)

……………………12分

19.解法一(幾何法)

(1)證明:∵E是CD中點(diǎn)

∴ED=AD=1

∴∠AED=45°

同理∠CEB=45°

∴∠BEA=90°  ∴EB⊥EA

∵平面D1AE⊥平面ABCE

∴EB⊥平面D1AE,AD1平面D1AE

∴EB⊥AD1……4分

(2)設(shè)O是AE中點(diǎn),連結(jié)OD1,因?yàn)槠矫?sub>

  過(guò)O作OF⊥AB于F點(diǎn),連結(jié)D1F,則D1F⊥AB,∴∠D1FO就是二面角D1-AB-E的平面角.

  在Rt△D1OF中,D1O=,OF=

,即二面角D1-AB-E等于………………………9分

(3)延長(zhǎng)FO交CD于G,過(guò)G作GH⊥D1F于H點(diǎn),

∵AB⊥平面D1FG  ∴GH⊥平面D1BA,

∵CE//AB   ∴CE//平面D1BA.

∴C到平面D1BA的距離等于GH.

又D1F=

∵FG?D1O=D1F?GH

∴GH=  即點(diǎn)   ………………………13分 

另解:在Rt△BED1中,BD1=. 又AD1=1,AB=2

   ∴∠BD1A=90°  ∴

設(shè)點(diǎn)C到平面ABD1的距離為h 則

  

…………………………………13分

解法二:(向量法)

(1)證明:取AE的中點(diǎn)O,AB的中點(diǎn)F,連結(jié)D1O、OF,則OF//BE。

∵ DE=DA=1  ∴∠AED=45°

 同理∠BEC=45° ∴∠BEA=90° ∴BE⊥EA  ∴OF⊥AE 

由已知D1O⊥EA 

又平面O1AE⊥平面ABCE,∴D1O⊥平面ABCE,以O(shè)為坐標(biāo)原點(diǎn),OF、OA、OD1所在直線(xiàn)分別為x、y、z軸,建立空間直角坐標(biāo)系。則B(),E(),D1),A(),C(

?=()?()=0

………………………………………………4分

(2)解:設(shè)平面ABD1的一個(gè)法向量為

,則y=1,z=1

 …………………………………………………………………6分

∵ OD⊥平面ABCE.

是平面ABE的一個(gè)法向量.

即二面角D1-AB-E等于.  ………………………9分

(3)設(shè)點(diǎn)C到平面ABD1的距離為d,

……………………………………………………………13分

20.解:(1)因?yàn)?sub>在區(qū)間(,-2]上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減,所以方程f′(x)的兩根滿(mǎn)足,…………2分

,得,所以,而,故b=0………………4分

,從而

……………………………………………………………………6分

(2)對(duì)任意的t1,t2[m-2,m],不等式恒成立,等價(jià)于在區(qū)間[m-2,m]上,當(dāng)0<m2時(shí),[m-2,m][ -2,2],所以在區(qū)間[m-2,m]上單調(diào)遞減,

, ……………………………………………9分

解得 ……………………………………………………………………11分

,∴,∴m的最小值是 ……………………………………13分

21.解:(1)當(dāng)AC垂直于x軸時(shí),  由橢圓定義,有

,  ………………………………………………………………2分

在Rt△AF1F中,

  ∴  ∴…………………………………………4分

(2)由得:

  ∴  ∴橢圓方程為

   設(shè),,

(i)若直線(xiàn)AC的斜率存在,則直線(xiàn)AC方程為

  代入橢圓方程有:

  ∴

由韋達(dá)定理得:所以 ………………………8分

于是 同理可得:

……………………………………………………………………12分

(ii)若直線(xiàn)AC⊥x軸,,,,這時(shí),

綜上可知,是定值6  …………………………………………………………13分

 


同步練習(xí)冊(cè)答案