(3)設(shè)“果圓 的方程為.. 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的方程為=1(m、n>0),過原點且傾角為θ和π-θ(0<θ<)的兩條直線分別交橢圓于A、C和B、D兩點.

(1)

用θ、m、n表示四邊形ABCD的面積S

(2)

若m、n為定值,當(dāng)θ在(0,]上變化時,求S的最大值u

(3)

如果u>mn,求的取值范圍

查看答案和解析>>

已知橢圓的方程為,點P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點M、A(0,-b),B(a,0)滿足,求點M的坐標(biāo);(2)設(shè)直線l1:y=k1x+p交橢圓于C、D兩點,交直線l2:y=k2x于點E.,證明:E為CD的中點;

(3)對于橢圓上的點Q(acos,bsin)(0<<π),如果橢圓上存在不同的兩個交點P1、P2滿足,寫出求作點P1、P2的步驟,并求出使P1、P2存在的的取值范圍.

查看答案和解析>>

已知橢圓┍的方程為
x2
a2
+
y2
b2
=1(a>b>0),點P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點M、A(0,-b),B(a,0)滿足
PM
=
1
2
PA
+
PB
),求點M的坐標(biāo);
(2)設(shè)直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-
b2
a2
,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負(fù)半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;

(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

 

查看答案和解析>>

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負(fù)半軸上有一點,且

(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;

(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案