解:(1)曲線C1的方程為 y=(x-t)3 (x-t)+s 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)選作題:考生任選一題作答,如果多做,則按所做的第一題計(jì)分.
A 如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E.
(I)證明:△ABE∽△ADC
(II)若△ABC的面積S=
1
2
AD•AE
,求∠BAC的大。
B 已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.                
C 已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案