如圖.圓內(nèi)的兩條弦.相交于圓內(nèi)一點P.已知..則 查看更多

 

題目列表(包括答案和解析)

(幾何證明選講選做題)如圖,圓O內(nèi)的兩條弦AB、CD相交于P,PA=PB=4,PD=4PC.若O到AB的距離為4,則O到CD的距離為   

查看答案和解析>>

(2013•江門一模)(幾何證明選講選做題)如圖,圓O內(nèi)的兩條弦AB、CD相交于P,PA=PB=4,PD=4PC.若O到AB的距離為4,則O到CD的距離為
7
7

查看答案和解析>>

精英家教網(wǎng)三選一題(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A(幾何證明選講)如圖,⊙O的兩條弦AB,CD相交于圓內(nèi)一點P,若PA=PB,PC=2,PD=8,OP=4,則該圓的半徑長為
 

B(坐標系與參數(shù)方程)曲線C1
x=1+cosθ 
y=sinθ 
(θ為參數(shù))
上的點到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數(shù))
上的點的最短離為
 

C(不等式選講)不等式|2x-1|-|x-2|<0的解集為
 

查看答案和解析>>

三選一題(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A(幾何證明選講)如圖,⊙O的兩條弦AB,CD相交于圓內(nèi)一點P,若PA=PB,PC=2,PD=8,OP=4,則該圓的半徑長為   
B(坐標系與參數(shù)方程)曲線C1上的點到曲線C2上的點的最短離為   
C(不等式選講)不等式|2x-1|-|x-2|<0的解集為   

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

一、選擇題:(本大題共8小題,每小題5分,滿分40分.在每小題給出的四個選項中。只有一項是符合題目要求的。)

     B、D、C、A      B、A、D、B

二、填空題:(本大題共7小題,每小題5分,滿分30分。其中13~15題是選做題,考生只能選做兩題,三題全答的,只計算前兩題得分。)

9、;  10、800;    11、①③④;   12、,1005;

13、   14、;   15、

三、解答題:(本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟。)

16、(1)證明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD = A

∴MN⊥平面PAD  ………………………………………………4分

MN平面PMN   ∴平面PMN⊥平面PAD  ……………………6分

(2)∵BC⊥BA   BC⊥PA   PA∩BA = A   ∴BC⊥平面PBA

∴∠BPC為直線PC與平面PBA所成的角                  

……………………………………………10分

中,

  ………………12分

17、解:(1)由題意可知、、、這5個點相鄰兩點間的弧長為

的可能的取值有,2,3,4

 ,

,

于是=×+2×+3×+4×=2!6分

 

 

 

(2)連結(jié)MP,取線段MP的中點D,則OD⊥MP,易求得OD=

當S點在線段MP上時,三角形SAB的面積等于××8 =,

所以只有當S點落在陰影部分時,面積才能大于,

S陰影 = S扇形OMP - S△OMP = ××-×= 4-8,

所以由幾何概型公式的三角形SAB的面積大于的概

率P =。  …………………12分

18、解:(1)證明:在中,由題設(shè),AD = 2可得

,于是。在矩形中,.

,所以平面.…………………………………….4分

(2)解:由題設(shè),,所以(或其補角)是異面直線所成的角.

中,由余弦定理得

由(1)知平面,平面

所以,因而,于是是直角三角形,

………………………….8分

(3)解:過點P做于H,過點H做于E,連結(jié)PE

平面,平面,.又,

因而平面,平面

,平面,又平面

,從而是二面角的平面角…………….12分

由題設(shè)可得,

于是在中,….14分

19、解: (1)依題意知,數(shù)列6ec8aac122bd4f6e是一個以500為首項,-20為公差的等差數(shù)列,所以

6ec8aac122bd4f6e,   ……………3分

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e  …………………7分

 (Ⅱ)依題意得,6ec8aac122bd4f6e,即6ec8aac122bd4f6e

可化簡得6ec8aac122bd4f6e, ①            …………………10分

6ec8aac122bd4f6e可設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e可知6ec8aac122bd4f6e是減函數(shù),

6ec8aac122bd4f6e是增函數(shù),   又6ec8aac122bd4f6e

時不等式①成立          …………………13分

答:從今年起該企業(yè)至少經(jīng)過4年,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤……………………………………………….……14分

20、(1)連接, E、F分別為、DB的中點, EF//,

平面,EF平面,

 EF//平面………………………………………………………4分

   (2)正方體中,平面平面

,正方形中,,

= B,AB、平面,

平面,平面,所以,又EF//,

所以EF. ……………………………………………………………9分

(3)正方體的棱長為2,、分別為、DB的中點。

     

       

       

     

             

              ……………………………..………………14分

21、解:(1)…………………………………2分

上是增函數(shù),上恒成立

…………………………………………4分

(當且僅當時取等號)

所以  ……………………..………………6分

(2)設(shè),則

時,在區(qū)間上是增函數(shù)

所以的最小值為 ……………………………………………10分

時,

因為函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上也是增函數(shù),

上為連續(xù)函數(shù),所以上為增函數(shù),

所以的最小值為

……………………………………14分

 

 

 

 


同步練習(xí)冊答案