已知函數. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數m的取值范圍為
 

查看答案和解析>>

已知函數f(x)是定義在實數集R上的不恒為零的偶函數,且對任意實數x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數解,求實數k的范圍.

查看答案和解析>>

8、已知函數y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數y=f(x)與y=log5x的圖象的交點個數為( 。

查看答案和解析>>

已知函數f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數的零點為.         ……………………………………6分

(Ⅱ)由,

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點N,連結MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(1)班應抽取學生10名; ………………………2分

(Ⅱ)通過計算可得九(1)班抽取學生的平均成績?yōu)?6.5,九(2)班抽取學生的平均成績?yōu)?7.2.由此可以估計九(1)班學生的平均成績?yōu)?6.5, 九(2)班學生的平均成績?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數為15,滿足條件的事件數為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設

由垂徑定理,

即       

化簡得  

軸平行時,的坐標也滿足方程.

故所求的中點的軌跡的方程為

    …………………………………………8分

②      假設過點P作直線與有心圓錐曲線交于兩點,且P為的中點,則

         

由于 

直線,即,代入曲線的方程得

             

            

故這樣的直線不存在.                      ……………………………………12分

21.(Ⅰ)函數的定義域為

由題意易知,   得    ;

                             當時,時,

故函數的單調增區(qū)間為,單調減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當時,遞減,無極值.

②     當時,由

時,時,

時,函數的極大值為

;

函數無極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 

 


同步練習冊答案