7.已知向量.則的最小值為 查看更多

 

題目列表(包括答案和解析)

已知向量,的最小值為

A. 1           B.             C.      D.

查看答案和解析>>

已知向量
α
,
β
,
γ
滿足|
α
|=1
,|
α
-
β
|=|
β
|
,(
α
-
γ
)•(
β
-
γ
)=0
.若對每一確定的
β
,|
γ|
的最大值和最小值分別為m,n,則對任意
β
,m-n的最小值是( 。
A、
1
2
B、
1
4
C、
3
4
D、1

查看答案和解析>>

已知向量
α
,
β
,
γ
滿足|
α
|=1,|
α
-
β
|=|
β
|,(
α
-
γ
)•(
β
-
γ
)=0.若對每一確定的
β
,|
γ
|的最大值和最小值分別為m,n,則對任意
β
,m-n的最小值是
 

查看答案和解析>>

.已知向量,若,則16x+4y的最小值為____ ____。

 

查看答案和解析>>

已知向量,,且,則y取最小值時,向量方向上的投影為(   )

A. B. C. D.

查看答案和解析>>

一、 A C C D A  B D B A C    D C

二、13.   14. ①甲乙的平均數(shù)相同,均為85;② 甲乙的中位數(shù)相同,均為86;       ③乙的成績較穩(wěn)定,甲的成績波動性較大;……       15.       16.

三、17(Ⅰ)

            =

            =

得,

.

故函數(shù)的零點為.       ……………………………………6分

(Ⅱ)由

.又

得 

         , 

                  ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,,PB=BC=CD=1,AB=2

                            …………3分

(Ⅱ) 當M為PB的中點時CM∥平面PDA.

取PB中點N,連結(jié)MN,DN,可證MN∥DN且MN=DN

∴CM∥DN,∴CM∥平面PDA                                …………6分

 (Ⅲ)分別以BC、BA、BP所在直線為x軸、y軸、z軸,建立空間直角坐標系.

假設(shè)在BC邊上存在點Q,使得二面角A-PD-Q為  

 

同理,,可得

=,

解得………………………………………12分

19. (Ⅰ)設(shè)“世博會會徽”卡有張,由,得=6.

 故“海寶”卡有4張. 抽獎者獲獎的概率為.                 …………6分

(Ⅱ),    的分布列為

  

1

2

3

4

 

p

                                                                         ………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡得  

軸平行時,的坐標也滿足方程.

故所求的中點的軌跡的方程為;

…………………………………………8分

②     假設(shè)過點P(1,1)作直線與有心圓錐曲線交于兩點,且P為的中點,則

         

由于 

直線,即,代入曲線的方程得

         即    

          得.

故當時,存在這樣的直線,其直線方程為;

時,這樣的直線不存在.        ………………………………12分

21. (Ⅰ)

得                   …………………………3分     

   

時,時,

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   ………………………5分

(Ⅱ)由(Ⅰ)

得 

時,時,

處取得極大值,

……………………………………7分

(1)       當時,函數(shù)在區(qū)間為遞減 ,

(2)     時, ,

(3)       當時,函數(shù)在區(qū)間為遞增 ,

                                  

                                          ………………………………………12分

22. (Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想時,一切恒成立.

①當時,成立.

②設(shè)時,,則由

=

*時,

由①②知時,對一切,有.   ………………………………10分

解法2:假設(shè)

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)證法1:

,由(Ⅱ)知

                                     …………………………………14分

證法2:

猜想.數(shù)學歸納法證明

①當時,成立

②假設(shè)當時,成立

由①②對成立,下同證法1。

                                            …………………………………14分

 

 

 

 


同步練習冊答案