解:(1)設(shè). 查看更多

 

題目列表(包括答案和解析)

解:(1)如圖①AH=AB

(2)數(shù)量關(guān)系成立.如圖②,延長(zhǎng)CB至E,使BE=DN

∵ABCD是正方形

∴AB=AD,∠D=∠ABE=90°

∴Rt△AEB≌Rt△AND

∴AE=AN,∠EAB=∠NAD

∴∠EAM=∠NAM=45°

∵AM=AM

∴△AEM≌△ANM

∵AB、AH是△AEM和△ANM對(duì)應(yīng)邊上的高,

∴AB=AH

(3)如圖③分別沿AM、AN翻折△AMH和△ANH,

得到△ABM和△AND

∴BM=2,DN=3,∠B=∠D=∠BAD=90°

分別延長(zhǎng)BM和DN交于點(diǎn)C,得正方形ABCE.

由(2)可知,AH=AB=BC=CD=AD.                          

  設(shè)AH=x,則MC=,  NC=                             圖②

在Rt⊿MCN中,由勾股定理,得

                                    

解得.(不符合題意,舍去)

∴AH=6.

查看答案和解析>>

解:(1)如圖,互相垂直平分.          (1分)

證明如下:連結(jié)、

//,

∴四邊形是平行四邊形.          (2分)

,

,

∵∠=90º,的中點(diǎn),

,                                          (2分)

∴四邊形是菱形.                                        (1分)

互相垂直平分.

解:(2)設(shè),則,.         (2分)

在Rt△中,∵,                           (1分)

.                                         (1分)

                         (1分)

.                                                 (2分)

查看答案和解析>>

解:(1)由拋物線C1得頂點(diǎn)P的坐標(biāo)為(2,5)………….1分

∵點(diǎn)A(-1,0)在拋物線C1上∴.………………2分

(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..

∵點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱,

∴PM過(guò)點(diǎn)A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴頂點(diǎn)M的坐標(biāo)為(,5).………………………3分

∵拋物線C2與C1關(guān)于x軸對(duì)稱,拋物線C3由C2平移得到

∴拋物線C3的表達(dá)式.  …………4分

(3)∵拋物線C4由C1繞x軸上的點(diǎn)Q旋轉(zhuǎn)180°得到

∴頂點(diǎn)N、P關(guān)于點(diǎn)Q成中心對(duì)稱.

 由(2)得點(diǎn)N的縱坐標(biāo)為5.

設(shè)點(diǎn)N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.

∵旋轉(zhuǎn)中心Q在x軸上,

∴EF=AB=2AH=6.

 ∴EG=3,點(diǎn)E坐標(biāo)為(,0),H坐標(biāo)為(2,0),R坐標(biāo)為(m,-5).

根據(jù)勾股定理,得

     

  

       

①當(dāng)∠PNE=90º時(shí),PN2+ NE2=PE2,

解得m=,∴N點(diǎn)坐標(biāo)為(,5)

②當(dāng)∠PEN=90º時(shí),PE2+ NE2=PN2,

解得m=,∴N點(diǎn)坐標(biāo)為(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

綜上所得,當(dāng)N點(diǎn)坐標(biāo)為(,5)或(,5)時(shí),以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

解:(1)A(-1,0),B(3,0),C(0,3).·················· 2分

拋物線的對(duì)稱軸是:x=1.······················· 3分

(2)①設(shè)直線BC的函數(shù)關(guān)系式為:y=kx+b

B(3,0),C(0,3)分別代入得:

解得:k= -1,b=3.

所以直線BC的函數(shù)關(guān)系式為:

當(dāng)x=1時(shí),y= -1+3=2,∴E(1,2).

當(dāng)時(shí),

Pm,m+3).·························· 4分

中,當(dāng)時(shí), 

當(dāng)時(shí),········· 5分

∴線段DE=4-2=2,線段···· 6分

∴當(dāng)時(shí),四邊形為平行四邊形.

解得:(不合題意,舍去).

因此,當(dāng)時(shí),四邊形為平行四邊形.··········· 7分

②設(shè)直線軸交于點(diǎn),由可得:

························ 8分

·········· 9分

查看答案和解析>>

解:(1)點(diǎn)C的坐標(biāo)為.

∵ 點(diǎn)A、B的坐標(biāo)分別為,

            ∴ 可設(shè)過(guò)AB、C三點(diǎn)的拋物線的解析式為.   

            將代入拋物線的解析式,得.

            ∴ 過(guò)A、BC三點(diǎn)的拋物線的解析式為.

(2)可得拋物線的對(duì)稱軸為,頂點(diǎn)D的坐標(biāo)為   

,設(shè)拋物線的對(duì)稱軸與x軸的交點(diǎn)為G.

直線BC的解析式為.

設(shè)點(diǎn)P的坐標(biāo)為.

解法一:如圖8,作OPAD交直線BC于點(diǎn)P

連結(jié)AP,作PMx軸于點(diǎn)M.

OPAD,

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  經(jīng)檢驗(yàn)是原方程的解.

  此時(shí)點(diǎn)P的坐標(biāo)為.

但此時(shí),OMGA.

  ∵

      ∴ OPAD,即四邊形的對(duì)邊OPAD平行但不相等,

      ∴ 直線BC上不存在符合條件的點(diǎn)P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如圖9,取OA的中點(diǎn)E,作點(diǎn)D關(guān)于點(diǎn)E的對(duì)稱點(diǎn)P,作PNx軸于

點(diǎn)N. 則∠PEO=∠DEA,PE=DE.

可得△PEN≌△DEG

,可得E點(diǎn)的坐標(biāo)為.

NE=EG=, ON=OE-NE=,NP=DG=.

∴ 點(diǎn)P的坐標(biāo)為.∵ x=時(shí),,

∴ 點(diǎn)P不在直線BC上.

                   ∴ 直線BC上不存在符合條件的點(diǎn)P .

 


(3)的取值范圍是.

查看答案和解析>>


同步練習(xí)冊(cè)答案