A. B. 查看更多

 

題目列表(包括答案和解析)

“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的(  )
A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分又不必要條件

查看答案和解析>>

a
b
?存在唯一的實數(shù)λ,使
b
a

a
b
?存在不全為零的實數(shù)λ,μ,使λ
a
b
=
0
;
a
b
不共線?若存在實數(shù)λ,μ使λ
a
b
=
0
,則λ=μ=0;
a
b
不共線?不存在實數(shù)λ,μ使λ
a
b
=
0
.下列命題是真命題的是
 
(填序號)

查看答案和解析>>

2、“a+b>2c”的一個充分條件是( 。

查看答案和解析>>

△A'B'C'斜二測畫法畫出的正△ABC的直觀圖,記△A'B'C'的面積為S',△ABC的面積為S,則
S′S
=
 

查看答案和解析>>

2、“a+b是偶數(shù)”是“a與b都是偶數(shù)”的(  )

查看答案和解析>>

一.選擇題:BACAC  DADBC

解析:

1.,復(fù)數(shù)  對應(yīng)的點為,它與原點的距離是,故選B.

2.,但.故選A.

4.把直線向下平移二個單位,則點到直線的距離就相等了,故點的軌跡為拋物線,它的方程為,選A.

5.依題意知,,,又,,,,故選C.

6.當(dāng)時,等價于,當(dāng)時,等價于,故選D.

7.∵是等差數(shù)列,,,∴,

,故選A.

8.由三視圖知該工作臺是棱長為80的正方體上面圍上一塊矩形和兩塊直角三角形合

板,如右圖示,則用去的合板的面積故選D.

9.,,故選B.

10.由,可得: 知滿足事件A的區(qū)域的面積

,而滿足所有條件的區(qū)域的面積:,從而,

得:,故選C.

二.填空題: 11. 18;12. ;13.;14. ;15.、.

解析:11.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號應(yīng)成等差數(shù)列,將4位學(xué)生的座位號按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號為(6+30)÷2=18,故另一位同學(xué)的座位號為18.

12.

13.設(shè)人經(jīng)過時間ts后到達(dá)點B,這時影長為AB=S,如圖由平幾的知識

可得=,由導(dǎo)數(shù)的意義知人影長度

的變化速度v=(m/s)

14.曲線為拋物線段

借助圖形直觀易得

15.由切割線定理得,,

連結(jié)OC,則,,

三.解答題:

16.解:(1)---3分

∴函數(shù)的最小正周期為,值域為。--------------------------------------5分

(2)解法1:依題意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------13分

解法2:依題意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------13分

解法3:由,--------------------7分

兩邊平方得,,--------------------------9分

  ∴

--------------------------------------11分

,得

.---------------------------------13分

17.解:(1)∵是長方體  ∴側(cè)面底面

∴四棱錐的高為點P到平面的距離---------------------2分

當(dāng)點P與點A重合時,四棱錐的高取得最大值,這時四棱錐體積最大----------------------------------------------------------------------------------------------------3分

中∵,------------- 4分

---------------------------------------------------5分

-----------------------------------7分

(2)不論點上的任何位置,都有平面垂直于平面.-------8分

證明如下:由題意知,,

    平面

平面   平面平面.------------------- 13分

18.解:(1)設(shè)“兩個編號和為8”為事件A,則事件A包含的基本事件為(2,6),(3,5),(4,4),(5,3),(6,2)共5個,又甲、乙兩人取出的數(shù)字共有6×6=36(個)等可能的結(jié)果,

-----------------------------------------------------------------6分

(2)這種游戲規(guī)則是公平的。----------------------------------------------------------------------------7分

設(shè)甲勝為事件B,乙勝為事件C,則甲勝即兩編號和為偶數(shù)所包含的基本事件數(shù)有18個:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)

所以甲勝的概率,乙勝的概率---------------------------11分

所以這種游戲規(guī)則是公平的。---------------------------------------------------------------------------------12分

19.解:(1)由橢圓的方程知,∴點,,

設(shè)的坐標(biāo)為,

∵FC是的直徑,∴

  ∴ -------------------------2分

,-------------------------------------------------3分

解得 -----------------------------------------------------------------------5分

橢圓的離心率---------------------------------6分

(2)∵過點F,B,C三點,∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------①-----------------------------------7分

∵BC的中點為,

∴BC的垂直平分線方程為-----②---------------------9分

由①②得,即--------------------11分

∵P在直線上,∴

  ∴--------------------------------------------------13分

∴橢圓的方程為------------------------------------------------------------------14分

20.解:(1)當(dāng)時,由

;()------------------------------------------------------2分

當(dāng)時,由.得--------------------------------------4分

---------------------------5分

(2)當(dāng)時,由<0,解得,---------------------------6分

當(dāng)時,------------------------------8分

∴函數(shù)的單調(diào)減區(qū)間為(-1,0)和(0,1)-----------------------------------------------9分

(3)對,都有,也就是恒成立,-------------------------------------------11分

由(2)知當(dāng)時,

∴函數(shù)都單調(diào)遞增-----------------------------------------------12分

當(dāng),∴當(dāng)時,

同理可得,當(dāng)時,有,

綜上所述得,對, 取得最大值2;

∴實數(shù)的取值范圍為.----------------------------------------------------------------14分

21.解:(1)由

--------------------------------------2分

,∴不合舍去-------------------------------------------3分

方法1:由

∴數(shù)列是首項為,公比為的等比數(shù)列----------------------5分

〔方法2:由

當(dāng)

∴數(shù)列是首項為

同步練習(xí)冊答案