18.甲.乙兩人玩一種游戲,在裝有質(zhì)地.大小完全相同.編號(hào)分別為1.2.3.4.5.6六個(gè)球的口袋中.甲先模出一個(gè)球.記下編號(hào).放回后乙再模一個(gè)球.記下編號(hào).如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏.否則算乙贏.(1)求甲贏且編號(hào)和為8的事件發(fā)生的概率,(2)這種游戲規(guī)則公平嗎?試說明理由. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)甲、乙兩人玩數(shù)字游戲,先由甲任想一個(gè)數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙想的數(shù)字記為b,且
(I)求兩人想的數(shù)字之差為3的概率;
(II)若兩人想的數(shù)字相同或相差1,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率

查看答案和解析>>

(本小題滿分12分)甲、乙兩人射擊,每次射擊擊中目標(biāo)的概率分別是. 現(xiàn)兩人玩射擊游戲,規(guī)則如下:若某人某次射擊擊中目標(biāo),則由他繼續(xù)射擊,否則由對(duì)方接替射擊. 甲、乙兩人共射擊3次,且第一次由甲開始射擊. 假設(shè)每人每次射擊擊中目標(biāo)與否均互不影響.(Ⅰ)求3次射擊的人依次是甲、甲、乙的概率;(Ⅱ)若射擊擊中目標(biāo)一次得1分,否則得0分(含未射擊). 用ξ表示乙的總得分,求ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿分12分)甲、乙兩人射擊,每次射擊擊中目標(biāo)的概率分別是. 現(xiàn)兩人玩射擊游戲,規(guī)則如下:若某人某次射擊擊中目標(biāo),則由他繼續(xù)射擊,否則由對(duì)方接替射擊. 甲、乙兩人共射擊3次,且第一次由甲開始射擊. 假設(shè)每人每次射擊擊中目標(biāo)與否均互不影響.(Ⅰ)求3次射擊的人依次是甲、甲、乙的概率;(Ⅱ)若射擊擊中目標(biāo)一次得1分,否則得0分(含未射擊). 用ξ表示乙的總得分,求ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿分12分)

甲乙兩位玩家在進(jìn)行“石頭、剪子、布”的游戲,假設(shè)兩人在游戲時(shí)出示三種手勢(shì)是等可能的。

(Ⅰ)求在1次游戲中甲勝乙的概率;

(Ⅱ)若甲乙雙方共進(jìn)行了3次游戲,隨機(jī)變量表示甲勝乙的次數(shù),求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個(gè)球,編號(hào)分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),若兩個(gè)編號(hào)的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號(hào)。

(1)列舉出所有的基本事件,并求甲贏且編號(hào)的和為5的事件發(fā)生的概率;

(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細(xì)解答過程,不給分)

(3)   如果請(qǐng)你猜這兩球的號(hào)碼之和,猜中有獎(jiǎng).猜什么數(shù)獲獎(jiǎng)的可能性大?說明理由.

 

查看答案和解析>>

一.選擇題:BACAC  DADBC

解析:

1.,復(fù)數(shù)  對(duì)應(yīng)的點(diǎn)為,它與原點(diǎn)的距離是,故選B.

2.,但.故選A.

4.把直線向下平移二個(gè)單位,則點(diǎn)到直線的距離就相等了,故點(diǎn)的軌跡為拋物線,它的方程為,選A.

5.依題意知,,,又,,,故選C.

6.當(dāng)時(shí),等價(jià)于,當(dāng)時(shí),等價(jià)于,故選D.

7.∵是等差數(shù)列,,,∴,

,故選A.

8.由三視圖知該工作臺(tái)是棱長(zhǎng)為80的正方體上面圍上一塊矩形和兩塊直角三角形合

板,如右圖示,則用去的合板的面積故選D.

9.,,故選B.

10.由,可得: 知滿足事件A的區(qū)域的面積

,而滿足所有條件的區(qū)域的面積:,從而,

得:,故選C.

二.填空題: 11. 18;12. ;13.;14. ;15.、.

解析:11.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號(hào)應(yīng)成等差數(shù)列,將4位學(xué)生的座位號(hào)按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號(hào)為(6+30)÷2=18,故另一位同學(xué)的座位號(hào)為18.

12.

13.設(shè)人經(jīng)過時(shí)間ts后到達(dá)點(diǎn)B,這時(shí)影長(zhǎng)為AB=S,如圖由平幾的知識(shí)

可得,=,由導(dǎo)數(shù)的意義知人影長(zhǎng)度

的變化速度v=(m/s)

14.曲線為拋物線段

借助圖形直觀易得

15.由切割線定理得,,

連結(jié)OC,則,,

三.解答題:

16.解:(1)---3分

∴函數(shù)的最小正周期為,值域?yàn)?sub>。--------------------------------------5分

(2)解法1:依題意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------13分

解法2:依題意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------13分

解法3:由,--------------------7分

兩邊平方得,--------------------------9分

  ∴

--------------------------------------11分

,得

.---------------------------------13分

17.解:(1)∵是長(zhǎng)方體  ∴側(cè)面底面

∴四棱錐的高為點(diǎn)P到平面的距離---------------------2分

當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),四棱錐的高取得最大值,這時(shí)四棱錐體積最大----------------------------------------------------------------------------------------------------3分

中∵,------------- 4分

---------------------------------------------------5分

-----------------------------------7分

(2)不論點(diǎn)上的任何位置,都有平面垂直于平面.-------8分

證明如下:由題意知,,

    平面

平面   平面平面.------------------- 13分

18.解:(1)設(shè)“兩個(gè)編號(hào)和為8”為事件A,則事件A包含的基本事件為(2,6),(3,5),(4,4),(5,3),(6,2)共5個(gè),又甲、乙兩人取出的數(shù)字共有6×6=36(個(gè))等可能的結(jié)果,

-----------------------------------------------------------------6分

(2)這種游戲規(guī)則是公平的。----------------------------------------------------------------------------7分

設(shè)甲勝為事件B,乙勝為事件C,則甲勝即兩編號(hào)和為偶數(shù)所包含的基本事件數(shù)有18個(gè):(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)

所以甲勝的概率,乙勝的概率---------------------------11分

所以這種游戲規(guī)則是公平的。---------------------------------------------------------------------------------12分

19.解:(1)由橢圓的方程知,∴點(diǎn),,

設(shè)的坐標(biāo)為

∵FC是的直徑,∴

  ∴ -------------------------2分

,-------------------------------------------------3分

解得 -----------------------------------------------------------------------5分

橢圓的離心率---------------------------------6分

(2)∵過點(diǎn)F,B,C三點(diǎn),∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------①-----------------------------------7分

∵BC的中點(diǎn)為

∴BC的垂直平分線方程為-----②---------------------9分

由①②得,即--------------------11分

∵P在直線上,∴

  ∴--------------------------------------------------13分

∴橢圓的方程為------------------------------------------------------------------14分

20.解:(1)當(dāng)時(shí),由,

;()------------------------------------------------------2分

當(dāng)時(shí),由.得--------------------------------------4分

---------------------------5分

(2)當(dāng)時(shí),由<0,解得,---------------------------6分

當(dāng)時(shí),------------------------------8分

∴函數(shù)的單調(diào)減區(qū)間為(-1,0)和(0,1)-----------------------------------------------9分

(3)對(duì),都有,也就是對(duì)恒成立,-------------------------------------------11分

由(2)知當(dāng)時(shí),

∴函數(shù)都單調(diào)遞增-----------------------------------------------12分

,

當(dāng)時(shí),∴當(dāng)時(shí),

同理可得,當(dāng)時(shí),有

綜上所述得,對(duì), 取得最大值2;

∴實(shí)數(shù)的取值范圍為.----------------------------------------------------------------14分

21.解:(1)由

--------------------------------------2分

,∴不合舍去-------------------------------------------3分

方法1:由

∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列----------------------5分

〔方法2:由

當(dāng)時(shí)

∴數(shù)列是首項(xiàng)為

同步練習(xí)冊(cè)答案