15. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,共40分.

2,4,6

二、填空題:本大題共6小題,每小題5分,共30分.

9.120   10.5    11.   12.   13.1(2分),(3分)

14.4(2分),(3分)

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

15.(本小題滿分12分)

   (I)解:因為α為第二象限的角,,

所以,,………………………………………2分

 ……………………………………………………… 4分

,

所以, …………………………… 6分

   (II)解:因為β為第三象限的角,,

所以, …………………………………………8分

,………10分

所以, ………………12分

16.(本小題滿分12分)

   (I)解:記這兩套試驗方案在一次試驗中均不成功的事件為A,則至少有一套試驗成功的事件為

    由題意,這兩套試驗方案在一次試驗中不成功的概率均為1-p.

所以,,

 

從而,

………………………………………6分

   (II)解:ξ的可取值為0,1,2. ……………………………………………7分

 ……………………………………………………10分

所以ξ的分布列為

ξ

0

1

2

P

0.49

0.42

0.09

ξ的數(shù)學(xué)期望……12分

    1. 解法一(I)證明:

      連接A1B,設(shè)A1B∩AB1 = E,連接DE.

      ∵ABC―A1B1C1是正三棱柱,且AA1 = AB,

      ∴四邊形A1ABB1是正方形,

      ∴E是A1B的中點,

      又D是BC的中點,

      ∴DE∥A1C. ………………………… 3分

      ∵DE平面AB1D,A1C平面AB1D,

      ∴A1C∥平面AB1D. ……………………4分

         (II)解:在面ABC內(nèi)作DF⊥AB于點F,在面A1ABB1內(nèi)作FG⊥AB1于點G,連接DG.

      ∵平面A1ABB1⊥平面ABC,  ∴DF⊥平面A1ABB1,

      ∴FG是DG在平面A1ABB1上的射影,  ∵FG⊥AB1, ∴DG⊥AB1

      ∴∠FGD是二面角B―AB1―D的平面角 …………………………7分

      設(shè)A1A = AB = 1,在正△ABC中,DF=

      在△ABE中,,

      在Rt△DFG中,,

      所以,二面角B―AB1―D的大小為 …………………………9分

         (III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,

      ∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.

      在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長線于點H,

      則CH的長度就是點C到平面AB1D的距離. ……………………………12分

      由△CDH∽△B1DB,得

      即點C到平面AB1D的距離是 ……………………………………14分

        建立空間直角坐標系D―xyz,如圖,

           (I)證明:

        連接A1B,設(shè)A1B∩AB1 = E,連接DE.

        設(shè)A1A = AB = 1,

         …………………………3分

        ,

         ……………………………………4分

           (II)解:, ,

        設(shè)是平面AB1D的法向量,則,

        ;

        同理,可求得平面AB1B的法向量是 ……………………7分

        設(shè)二面角BAB1D的大小為θ,,

        ∴二面角BAB1D的大小為 …………………………9分

           (III)解由(II)得平面AB1D的法向量為

        取其單位法向量

        ∴點C到平面AB1D的距離 ……………………14分

        18.(本小題滿分14分)

           (I)解:依題意,直線l顯然不平行于坐標軸,故

        ,得

              ① ………………………… 3分

        由直線l與橢圓相交于兩個不同的點,得

        ,

        …………………………………………………… 5分

           (II)解:設(shè)由①,得

        因為,代入上式,得  ……………8分

        于是,△OAB的面積

                               ………………11分

        其中,上式取等號的條件是 ……………………12分

         

        這兩組值分別代入①,均可解出

        所以,△OAB的面積取得最大值的橢圓方程是 ………………14分

        19.(本小題滿分14分)

           (I)解:對函數(shù) ……………………… 2分

        要使上是增函數(shù),只要上恒成立,

        上恒成立 ……………………………………4分

        因為上單調(diào)遞減,所以上的最小值是

        注意到a > 0,所以a的取值范圍是 ……………………………………6分

           (II)解:①當時,由(I)知,上是增函數(shù),

        此時上的最大值是 ……………………8分

        ②當,

        解得 ……………………………………………………10分

        因為

        所以上單調(diào)遞減,

        此時上的最大值是………… 13分

        綜上,當時,上的最大值是;

        時,上的最大值是 ……………14分

        20.(本小題滿分14分)

           (I)解:顯然 ……………………………………1分

        ……………………………………3分

        所以,

                  …………………………6分

           (II)解:

           ………………………………………………9分

          

             ………………12分

        所以,M的最小值為 ………………………………14分

         

         


        同步練習冊答案