解:(1).切線的斜率為.切線的方程為 查看更多

 

題目列表(包括答案和解析)

雙曲線(a>0,b>0)的左右焦點為F1,F(xiàn)2,其上一點P,若∠F1PF2=θ,
(1)證明:三角形
(2)若雙曲線的離心率為2,斜率為1的直線與雙曲線交于B、D兩點,BD的中點M(1,3),雙曲線的右頂點為A,右焦點為F,若過A、B、D三點的圓與x軸相切,請求解雙曲線方程和的值.

查看答案和解析>>

 已知、,橢圓C的方程為,、分別為橢圓C的兩個焦點,設(shè)為橢圓C上一點,存在以為圓心的外切、與內(nèi)切

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點作斜率為的直線與橢圓C相交于A、B兩點,與軸相交于點D,若

的值;

(Ⅲ)已知真命題:“如果點T()在橢圓上,那么過點T

的橢圓的切線方程為=1.”利用上述結(jié)論,解答下面問題:

已知點Q是直線上的動點,過點Q作橢圓C的兩條切線QM、QN

M、N為切點,問直線MN是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由。

 

 

 

 

 

 

查看答案和解析>>

已知函數(shù))在處的切線的斜率為。

⑴求函數(shù)的解析式并求單調(diào)區(qū)間;

⑵設(shè),其中,問:對于任意的,方程在區(qū)間上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù)。若不存在,請說明理由。

查看答案和解析>>

設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

則|FE|==,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-

∴直線的方程為:,∴原點到直線的距離=,

設(shè)直線的方程為:,代入得,,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=,

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>

已知函數(shù),,且函數(shù)在點處的切線方程為.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)點,當(dāng)時,直線的斜率恒小于,試求實數(shù)的取值范圍;

(Ⅲ)證明:.

 

查看答案和解析>>


同步練習(xí)冊答案