16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)  已知二項(xiàng)式 

(1)求其展開式中第四項(xiàng)的二項(xiàng)式系數(shù);

(2)求其展開式中第四項(xiàng)的系數(shù) 。

查看答案和解析>>

(本小題滿分13分)某廠用甲、乙兩種產(chǎn)品,已知生產(chǎn)1噸A產(chǎn)品,1噸B產(chǎn)品分別需要的甲乙原料數(shù)、可獲得的利潤(rùn)及該廠現(xiàn)有原料數(shù)如表:

產(chǎn)品

所需原料

A產(chǎn)品(t)

B產(chǎn)品(t)

現(xiàn)有原料(t)

甲(t)

2

1

14

乙(t)

1

3

18

利潤(rùn)(萬(wàn)元)

5

3

 

(1)在現(xiàn)有原料下,A、B產(chǎn)品應(yīng)各生產(chǎn)多少才能使利潤(rùn)最大?

(2)如果1噸B產(chǎn)品的利潤(rùn)增加到20萬(wàn)元,原來(lái)的最優(yōu)解為何改變?

(3)如果1噸B產(chǎn)品的利潤(rùn)減少1萬(wàn)元,原來(lái)的最優(yōu)解為何改變?

(4)1噸B產(chǎn)品的利潤(rùn)在什么范圍,原最優(yōu)解才不會(huì)改變?

查看答案和解析>>

 (本小題滿分13分)

某市物價(jià)局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個(gè)月的批發(fā)價(jià)格和該藥品在藥店的銷售價(jià)格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價(jià)格按月份以12元/盒為中心價(jià)隨某一正弦曲線上下波動(dòng),且3月份的批發(fā)價(jià)格最高為14元/盒,7月份的批發(fā)價(jià)格最低為10元/盒.該藥品在藥店的銷售價(jià)格按月份以14元/盒為中心價(jià)隨另一正弦曲線上下波動(dòng),且5月份的銷售價(jià)格最高為16元/盒,9月份的銷售價(jià)格最低為12元/盒.

(Ⅰ)求該藥品每盒的批發(fā)價(jià)格f(x)和銷售價(jià)格g(x)關(guān)于月份的函數(shù)解析式;

(Ⅱ)假設(shè)某藥店每月初都購(gòu)進(jìn)這種藥品p 盒,且當(dāng)月售完,求該藥店在2009年哪些月份是盈利的?說(shuō)明你的理由.

查看答案和解析>>

(本小題滿分13分) 根據(jù)長(zhǎng)沙市建設(shè)大河西的規(guī)劃,市旅游局?jǐn)M在咸嘉湖建立西湖生態(tài)文化公園. 如圖,設(shè)計(jì)方案中利用湖中半島上建一條長(zhǎng)為的觀光帶AB,同時(shí)建一條連接觀光帶和湖岸的長(zhǎng)為2的觀光游廊BC,且BC與湖岸MN(湖岸可看作是直線)的夾角為60°,BA與BC的夾角為150°,并在湖岸上的D處建一個(gè)觀光亭,設(shè)CD=xkm(1<x<4).

(Ⅰ)用x分別表示tan∠BDC和tan∠ADM;

(Ⅱ)試確定觀光亭D的位置,使得在觀光亭D處觀賞

觀光帶AB的視覺(jué)效果最佳.

查看答案和解析>>

 (本小題滿分13分)

已知橢圓的焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0),過(guò)點(diǎn)F2且垂直于軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|BF1|+|BF2|=10,設(shè)點(diǎn)A,C為橢圓上不同兩點(diǎn),使得|AF2|,|BF2|,|CF2|成等差數(shù)列.

(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ) 求線段AC的中點(diǎn)的橫坐標(biāo);

(Ⅲ)求線段AC的垂直平分線在y軸上的截距的取值范圍.

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

二、填空題:本大題共5小題,每題5分,共25分.

11.4                                      12.                                  13.

14.                                  15.①

三、解答題:本題共6小題,共75分.

16.解:(1)  

 

(2)  

       

 

 

 

17.解:(1) 甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

(2) 乙隊(duì)以2∶0獲勝的概率為;

乙隊(duì)以2∶1獲勝的概率為

∴乙隊(duì)獲勝的概率為P2=P'2+''2=0.16+0.192=0.352.

18.解:(1) ∵  函數(shù)是定義在R上的奇函數(shù),

∵       ∴ 

處的切線方程為

∴  ,且, ∴ 

(2)

依題意對(duì)任意恒成立,   

對(duì)任意恒成立,即對(duì)任意恒成立,

19.解法一:(1) 證明:取中點(diǎn)為,連結(jié)、

               ∵△是等邊三角形, ∴

               又∵側(cè)面底面,

               ∴底面,

               ∴在底面上的射影,

               又∵,

              

               ∴,  ∴,

                ∴,      ∴

(2) 取中點(diǎn),連結(jié)、,    

    ∵.    ∴

又∵,

平面,∴

是二面角的平面角.                  

,,

,∴,∴

∴二面角的大小為                       

解法二:證明:(1) 取中點(diǎn)為,中點(diǎn)為,連結(jié),

∵△是等邊三角形,∴

又∵側(cè)面底面,∴底面,

∴以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

如圖,   

,△是等邊三角形,

     ∴

(2) 設(shè)平面的法向量為

   ∴

,則,∴               

設(shè)平面的法向量為,              

,∴,

,則,∴       

,

,   ∴二面角的大小為.        

20.解:(1) 由題意得,  ①, 

當(dāng)時(shí),,解得

當(dāng)時(shí),有  ②,

①式減去②式得,

于是,

因?yàn)?sub>,所以,

所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

所以的通項(xiàng)公式為).

(2) 設(shè)存在滿足條件的正整數(shù),則,,,

,,…,,,,…,,

所以,,…,均滿足條件,

它們組成首項(xiàng)為,公差為的等差數(shù)列.……(8分)

設(shè)共有個(gè)滿足條件的正整數(shù),則,解得.(10分)

所以,中滿足條件的正整數(shù)存在,共有個(gè),的最小值為.(12分)

21.(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為

,

整理得 . ①

設(shè)是方程①的兩個(gè)不同的根,

,   ②

,由是線段的中點(diǎn),得

,∴

解得,代入②得,的取值范圍是(12,+∞).

于是,直線的方程為,即   

法2:設(shè),,則有

 

依題意,,∴

的中點(diǎn),∴,從而

又由在橢圓內(nèi),∴,

的取值范圍是.    

直線的方程為,即.   

(2)  ∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③      

又設(shè),的中點(diǎn)為,則是方程③的兩根,

到直線的距離,

故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:

 


同步練習(xí)冊(cè)答案