17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)  已知二項式 

(1)求其展開式中第四項的二項式系數;

(2)求其展開式中第四項的系數 。

查看答案和解析>>

(本小題滿分13分)某廠用甲、乙兩種產品,已知生產1噸A產品,1噸B產品分別需要的甲乙原料數、可獲得的利潤及該廠現有原料數如表:

產品

所需原料

A產品(t)

B產品(t)

現有原料(t)

甲(t)

2

1

14

乙(t)

1

3

18

利潤(萬元)

5

3

 

(1)在現有原料下,A、B產品應各生產多少才能使利潤最大?

(2)如果1噸B產品的利潤增加到20萬元,原來的最優(yōu)解為何改變?

(3)如果1噸B產品的利潤減少1萬元,原來的最優(yōu)解為何改變?

(4)1噸B產品的利潤在什么范圍,原最優(yōu)解才不會改變?

查看答案和解析>>

 (本小題滿分13分)

某市物價局調查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調查發(fā)現,該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.

(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關于月份的函數解析式;

(Ⅱ)假設某藥店每月初都購進這種藥品p 盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.

查看答案和解析>>

(本小題滿分13分) 根據長沙市建設大河西的規(guī)劃,市旅游局擬在咸嘉湖建立西湖生態(tài)文化公園. 如圖,設計方案中利用湖中半島上建一條長為的觀光帶AB,同時建一條連接觀光帶和湖岸的長為2的觀光游廊BC,且BC與湖岸MN(湖岸可看作是直線)的夾角為60°,BA與BC的夾角為150°,并在湖岸上的D處建一個觀光亭,設CD=xkm(1<x<4).

(Ⅰ)用x分別表示tan∠BDC和tan∠ADM;

(Ⅱ)試確定觀光亭D的位置,使得在觀光亭D處觀賞

觀光帶AB的視覺效果最佳.

查看答案和解析>>

 (本小題滿分13分)

已知橢圓的焦點為F1(-4,0),F2(4,0),過點F2且垂直于軸的直線與橢圓的一個交點為B,且|BF1|+|BF2|=10,設點A,C為橢圓上不同兩點,使得|AF2|,|BF2|,|CF2|成等差數列.

(Ⅰ) 求橢圓的標準方程;

(Ⅱ) 求線段AC的中點的橫坐標;

(Ⅲ)求線段AC的垂直平分線在y軸上的截距的取值范圍.

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

二、填空題:本大題共5小題,每題5分,共25分.

11.4                                      12.                                  13.

14.                                  15.①

三、解答題:本題共6小題,共75分.

16.解:(1)  

 

(2)  

       

 

 

 

17.解:(1) 甲隊以二比一獲勝,即前兩場中甲勝1場,第三場甲獲勝,其概率為

(2) 乙隊以2∶0獲勝的概率為;

乙隊以2∶1獲勝的概率為

∴乙隊獲勝的概率為P2=P'2+''2=0.16+0.192=0.352.

18.解:(1) ∵  函數是定義在R上的奇函數,

∵       ∴ 

處的切線方程為

∴  ,且, ∴ 

(2)

依題意對任意恒成立,   

對任意恒成立,即對任意恒成立,

19.解法一:(1) 證明:取中點為,連結、,

               ∵△是等邊三角形, ∴

               又∵側面底面,

               ∴底面,

               ∴在底面上的射影,

               又∵,

              

               ∴,  ∴

                ∴,      ∴

(2) 取中點,連結、,    

    ∵.    ∴

又∵,,

平面,∴,

是二面角的平面角.                  

,

,∴,∴,

∴二面角的大小為                       

解法二:證明:(1) 取中點為,中點為,連結

∵△是等邊三角形,∴,

又∵側面底面,∴底面,

∴以為坐標原點,建立空間直角坐標系

如圖,   

,△是等邊三角形,

     ∴

(2) 設平面的法向量為

   ∴

,則,∴               

設平面的法向量為,              

,∴

,則,∴       

,

,   ∴二面角的大小為.        

20.解:(1) 由題意得,  ①, 

時,,解得,

時,有  ②,

①式減去②式得,

于是,,,

因為,所以,

所以數列是首項為,公差為的等差數列,

所以的通項公式為).

(2) 設存在滿足條件的正整數,則,,

,,…,,,,…,,

所以,…,均滿足條件,

它們組成首項為,公差為的等差數列.……(8分)

設共有個滿足條件的正整數,則,解得.(10分)

所以,中滿足條件的正整數存在,共有個,的最小值為.(12分)

21.(Ⅰ)法1:依題意,顯然的斜率存在,可設直線的方程為

,

整理得 . ①

是方程①的兩個不同的根,

,   ②

,由是線段的中點,得

,∴

解得,代入②得,的取值范圍是(12,+∞).

于是,直線的方程為,即   

法2:設,則有

 

依題意,,∴

的中點,∴,從而

又由在橢圓內,∴

的取值范圍是.    

直線的方程為,即.   

(2)  ∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③      

又設,的中點為,則是方程③的兩根,

到直線的距離,

故所求的以線段的中點為圓心且與直線相切的圓的方程為:

 


同步練習冊答案