4.對(duì)于任意實(shí)數(shù)x.符號(hào)[x]是不超過(guò)x的最大整數(shù).例如[2]=2.[2.1]=2.[-2.1]=-3.那么[log21]+[log22]+[log23]+[log24]+-+[log232]= . 查看更多

 

題目列表(包括答案和解析)

14、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù)”.在實(shí)數(shù)軸R(箭頭向右)上[x]是在點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),當(dāng)x是整數(shù)時(shí)[x]就是x.這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

13、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.那么[log21]+[log22]+[log23]+[log24]+…+[log264]的值為
264

查看答案和解析>>

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是“不超過(guò)x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù),[x]是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),這個(gè)函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2,[-1.5]=-2,[2.5]=2,則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值為(  )
A、28B、32C、33D、34

查看答案和解析>>

8、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用,那么[log31]+[log32]+[log33]+…+[log3243]的值為( 。

查看答案和解析>>

13、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),這個(gè)函數(shù)[x]叫做“取整函數(shù)”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

評(píng)分說(shuō)明:

1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分參考制訂相應(yīng)的評(píng)分細(xì)則.

2.對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù).選擇題不給中間分.

一.選擇題

1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

11.B     12.D

二.填空題

13.300;     14.60;       15.①、②③或①、③②;     16.103.

三.解答題

17.解:

(Ⅰ)因?yàn)?sub>點(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,

所以.     2分

(Ⅱ)∵,,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范圍是.(或?qū)懗?sub>) 10分

18.解:

(Ⅰ)記“恰好選到1個(gè)曾經(jīng)參加過(guò)社會(huì)實(shí)踐活動(dòng)的同學(xué)”為事件的,    1分

則其概率為.   5分

(Ⅱ)記“活動(dòng)結(jié)束后該宿舍至少有3個(gè)同學(xué)仍然沒(méi)有參加過(guò)社會(huì)實(shí)踐活動(dòng)”為事件的B,“活動(dòng)結(jié)束后該宿舍仍然有3個(gè)同學(xué)沒(méi)有參加過(guò)社會(huì)實(shí)踐活動(dòng)”為事件的C,“活動(dòng)結(jié)束后該宿舍仍然有4個(gè)同學(xué)沒(méi)有參加過(guò)社會(huì)實(shí)踐活動(dòng)”為事件的D. 6分

.     10分

=+=.      12分

19.證:

(Ⅰ)因?yàn)樗倪呅?sub>是矩形∴

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)過(guò)A1A1DB1BD,連接,

平面,

BCA1D

平面BCC1B1

故∠A1CD為直線與平面所成的角.

       5分

在矩形中,

因?yàn)樗倪呅?sub>是菱形,∠A1AB=60°, CB=3,AB=4,

,. 7分

(Ⅲ)∵,∴平面

到平面的距離即為到平面的距離. 9分

連結(jié),交于點(diǎn)O,

∵四邊形是菱形,∴

∵平面平面,∴平面

即為到平面的距離. 11分

,∴到平面的距離為.  12分

 

20.解:

(Ⅰ)由題意,,  1分

又∵數(shù)列為等差數(shù)列,且,∴.   3分

,∴.     5分

(Ⅱ)的前幾項(xiàng)依次為, 7分

=5.    8分

.    12分

21.解:

(Ⅰ)∵,     2分

,得.     4分

的單調(diào)增區(qū)間為.  5分

(Ⅱ)當(dāng)時(shí),恒有||≤2,即恒有成立.

即當(dāng)時(shí),      6分

由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

,,∴

max.       8分

,,∴

min.   10分

.解得

所以,當(dāng)時(shí),函數(shù)上恒有||≤2成立. 12分

22.解:

(Ⅰ)由已知,,

解得    2分

,∴

軸,.  4分

,

成等比數(shù)列.    6分

(Ⅱ)設(shè)、,由

得  ,

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

 


同步練習(xí)冊(cè)答案