(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式, 查看更多

 

題目列表(包括答案和解析)

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對(duì)任意的x1∈D,存在唯一的x2∈D滿足等式
f(x1)+f(x2)2
=M
,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對(duì)任意的x1∈D,存在唯一的x2∈D滿足等式數(shù)學(xué)公式,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對(duì)任意的x1∈D,存在唯一的x2∈D滿足等式
f(x1)+f(x2)
2
=M
,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對(duì)任意的x1∈D,存在唯一的x2∈D滿足等式,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對(duì)任意的x1∈D,存在唯一的x2∈D滿足等式,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

一、  BCCC,ADBA學(xué)科網(wǎng)(Zxxk.Com)

二、  30    2      1          50     96      96 學(xué)科網(wǎng)(Zxxk.Com)

三、  解答題學(xué)科網(wǎng)(Zxxk.Com)

16 (1)  學(xué)科網(wǎng)(Zxxk.Com)

ω學(xué)科網(wǎng)(Zxxk.Com)

   (2) 學(xué)科網(wǎng)(Zxxk.Com)

17  (I)以D為原點(diǎn),DA,DC,DD1所在直線為x軸,y軸,z軸,建立系學(xué)科網(wǎng)(Zxxk.Com)

       E點(diǎn)坐標(biāo)為(1,1,1).

      (2) 略

      (3)二面角D1―BF―C的余弦值為

18 (1)

  (2)

      

  (3)(Ⅰ)

        當(dāng)且僅當(dāng)時(shí),即x=7時(shí)等號(hào)成立.

   到第7年,年平均盈利額達(dá)到最大值,工廠共獲利12×7+30=114萬(wàn)元.……10分

(Ⅱ)

   故到第10年,盈利額達(dá)到最大值,工廠獲利102+12=114萬(wàn)元         ……11分

       盈利額達(dá)到的最大值相同,而方案Ⅰ所用的時(shí)間較短,故方案Ⅰ比較合理.…12分

191橢圓的方程是:.    

   2,,  為常數(shù).   

20 (1)用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,

至少有1人面試合格的概率是

 (2)∴的分布列是

0

1

2

3

的期望

211   2(2)①,當(dāng)時(shí),.     假設(shè),則

由數(shù)學(xué)歸納法證明為常數(shù)數(shù)列,是等差數(shù)列,其通項(xiàng)為.   ……8分

,

當(dāng)時(shí),.        假設(shè),則

由數(shù)學(xué)歸納法,得出數(shù)列.……………10分

,

………12分

.     ………………14分

 

 


同步練習(xí)冊(cè)答案