9.已知向量.向量.曲線上一點(diǎn)P到的距離為6.Q為PF的中點(diǎn).O為坐標(biāo)原點(diǎn).則(A)5 (B)1 (C)10或2 (D)5或1 查看更多

 

題目列表(包括答案和解析)

已知A(3,0)及雙曲線E:
x2
9
-
y2
16
=1
,若雙曲線E的右支上的點(diǎn)Q到點(diǎn)B(m,0)(m≥3)距離的最小值為|AB|.
(1)求m的取值范圍,并指出當(dāng)m變化時(shí)B的軌跡C
(2)如(圖1),軌跡C上是否存在一點(diǎn)D,它在直線y=
4
3
x
上的射影為P,使得
AP
OD
=
OP
PD
?若存在試指出雙曲線E的右焦點(diǎn)F分向量
AD
所成的比;若不存在,請(qǐng)說明理由.
(3)(理)當(dāng)m為定值時(shí),過軌跡C上的點(diǎn)B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點(diǎn)(圖2),且與直線y=
4
3
x
y=-
4
3
x
分別交于M、N兩點(diǎn),求△MON周長(zhǎng)的最小值.

查看答案和解析>>

已知直線l的方向向量為=(1,1),且過直線l1:2x+y+1=0和直線l2:x-2y+3=0的交點(diǎn).
(1)求直線l的方程;
(2)若點(diǎn)P(x,y)是曲線y=x2-lnx上任意一點(diǎn),求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

已知對(duì)任意的平面向量,把繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角,得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P
①已知平面內(nèi)的點(diǎn)A(1,2),B,把點(diǎn)B繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)
②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時(shí)針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡是曲線x2-y2=1,求原來曲線C的方程.

查看答案和解析>>

已知:向量,,曲線上一點(diǎn)P到點(diǎn)F(3,0)的距離為6,M為PF的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OM|=( )
A.1
B.2
C.5
D.1或5

查看答案和解析>>

已知二階矩陣M=()有特征值λ1=2及對(duì)應(yīng)的一個(gè)特征向量
(Ⅰ)求矩陣M;
(II)若,求
(2)已知直線l:(t為參數(shù)),曲線C1  (θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線C2C,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,,

,????????????????????????????????????????????????????????????????????????????????????????? 3分

,

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當(dāng)且僅當(dāng)時(shí)取"=".

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;???????????????????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1. 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,.則,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

當(dāng)時(shí),.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.???????????? 12分

 

21.解:(Ⅰ)設(shè),,

,,

,

.∵,

,∴,∴.??????????????????????????????????????????????????????????????? 2分

則N(c,0),M(0,c),所以,

,則,

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,,???????????????????????????????????????????????????????????????? 7分

,

,,.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

設(shè),則,,,

,則,

時(shí)單調(diào)遞增,????????????????????????????????????????????????????????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或,

∴S關(guān)于u在區(qū)間單調(diào)遞增,?????????????????????????????????????????????????????????????????????? 11分

,.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,,則,     1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.????????????????????????????????????????????????????????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

,∴,??????? 5分

,則,∵,∴上遞增,

,從而,故上也單調(diào)遞增,

,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

,

,

,

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

疊加得:

.???????????????????????????????????????????????????????????????????????? 12分

,

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案