13. , 14. ,15. , 16. . 查看更多

 

題目列表(包括答案和解析)

(本題滿分15分)某市物價局調查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒。該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒。

(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關于月份的函數(shù)解析式;

(Ⅱ)假設某藥店每月初都購進這種藥品p 盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.

查看答案和解析>>

(本小題滿分12分)

分 組

頻數(shù)

頻率

[13,14)

[14,15)

[15,16)

[16,17)

[17,18]

某班全部名學生在一次百米測試中,成績全部介于13秒和18秒之間。將測試結果按如下方式分為五組:第一組[13,14);第二組[14,15);…;第五組[17,18],右表是按上述分組方式得到的頻率分布表。

(1)求及上表中的的值;

(2)設m,n是從第一組或第五組中任意抽取的兩名

 學生的百米測試成績,求事件“”的概率.

查看答案和解析>>

正整數(shù)按下表排列:

1     2     5     10    17    …

4     3     6     11    18    …

9     8     7     12    19    …

16    15    14    13    20    …

25    24    23    22    21    …

…    …    …    …    …    …

位于對角線位置的正整數(shù)1,3,7,13,21,…,構成數(shù)列,則_______;通項公式=____________。

查看答案和解析>>

正整數(shù)按下表排列:

1     2     5     10    17    …

4     3     6     11    18    …

9     8     7     12    19    …

16    15    14    13    20    …

25    24    23    22    21    …

…    …    …    …    …    …

位于對角線位置的正整數(shù)1,3,7,13,21,…,構成數(shù)列,則_______;通項公式=____________。

查看答案和解析>>

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售。如果當天賣不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【解析】(Ⅰ)當日需求量時,利潤=85;

當日需求量時,利潤

關于的解析式為;

(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

=76.4;

(ii)利潤不低于75元當且僅當日需求不少于16枝,故當天的利潤不少于75元的概率為

 

查看答案和解析>>

三、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2     14. 31    15.     16.  2.

三、解答題

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調遞增區(qū)間為。

18.(Ⅰ)解:設“從甲盒內取出的2個球均為紅球”為事件,“從乙盒內取出的2個球均為紅球”為事件.由于事件相互獨立,且

,

故取出的4個球均為紅球的概率是

(Ⅱ)解:設“從甲盒內取出的2個球中,1個是紅球,1個是黑球;從乙盒內取出的2個紅球為黑球”為事件,“從甲盒內取出的2個球均為黑球;從乙盒內取出的2個球中,1個是紅球,1個是黑球”為事件.由于事件互斥,且

故取出的4個紅球中恰有4個紅球的概率為

19.(Ⅰ)取DC的中點E.

∵ABCD是邊長為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點O,因為ABCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增區(qū)間為,。

(2)要使當恒成立,只要當。

由(1)知

時,是增函數(shù),;

時,是減函數(shù),;

時,是增函數(shù),

,因此。

21. 證明:由是關于x的方程的兩根得

,

是等差數(shù)列。

(2)由(1)知

。

。

符合上式, 。

(3)

  ②

①―②得

。

22. (1)∵

 

,∴

,

在點附近,當時,;當時,

是函數(shù)的極小值點,極小值為

在點附近,當時,;當時,

是函數(shù)的極大值點,極大值為

,易知,

是函數(shù)的極大值點,極大值為;

是函數(shù)的極小值點,極小值為

(2)若在上至少存在一點使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

時,函數(shù)在區(qū)間上遞增,且極小值為

∴此時上至少存在一解; 

時,函數(shù)在區(qū)間上遞增,在上遞減,

∴要滿足條件應有函數(shù)的極大值,即

綜上,實數(shù)的取值范圍為。

 

 


同步練習冊答案