10.經(jīng)過點M(0.3)且方向向量為的直線ι被圓截得的弦長為( ) 查看更多

 

題目列表(包括答案和解析)

過點P(-3,1)且方向向量為
a
=(2,-5)
的光線經(jīng)直線y=-2反射后通過拋物線y2=mx,(m≠0)的焦點,則拋物線的方程為(  )
A、y2=-2x
B、y2=-
3
2
x
C、y2=4x
D、y2=-4x

查看答案和解析>>

過點P(-3,1)且方向向量為
a
=(2,-5)
的光線經(jīng)直線y=-2反射后通過拋物線y2=mx,(m≠0)的焦點,則拋物線的方程為( 。
A.y2=-2xB.y2=-
3
2
x
C.y2=4xD.y2=-4x

查看答案和解析>>

過點P(-3,1)且方向向量為的光線經(jīng)直線y=-2反射后通過拋物線y2=mx,(m≠0)的焦點,則拋物線的方程為( )
A.y2=-2
B.
C.y2=4
D.y2=-4

查看答案和解析>>

過點P(-3,1)且方向向量為的光線經(jīng)直線y=-2反射后通過拋物線y2=mx,(m≠0)的焦點,則拋物線的方程為( )
A.y2=-2
B.
C.y2=4
D.y2=-4

查看答案和解析>>

過點P(-3,1)且方向向量為數(shù)學(xué)公式的光線經(jīng)直線y=-2反射后通過拋物線y2=mx,(m≠0)的焦點,則拋物線的方程為


  1. A.
    y2=-2x
  2. B.
    數(shù)學(xué)公式
  3. C.
    y2=4x
  4. D.
    y2=-4x

查看答案和解析>>

三、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2      14. 31    15.     16.  2.

三、解答題

17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(I)解:記這兩套試驗方案在一次試驗中均不成功的事件為A,則至少有一套試驗成功的事件為    由題意,這兩套試驗方案在一次試驗中不成功的概率均為1-p.

所以,,    從而,

   (II)解:ξ的可取值為0,1,2.

 

所以ξ的分布列為

ξ

0

1

2

P

0.49

0.42

0.09

ξ的數(shù)學(xué)期望 

19.(Ⅰ)取DC的中點E.

∵ABCD是邊長為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點O,因為ABCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解: (Ⅰ)恒成立,

所以,.

恒成立,

所以 ,

從而有.

,.

 (Ⅱ)令,

    則

所以上是減函數(shù),在上是增函數(shù),

從而當時,.

所以方程只有一個解.

21.證明:由是關(guān)于x的方程的兩根得

。

是等差數(shù)列。

(2)由(1)知

。

。

符合上式, 。

(3)

  ②

①―②得 。

。

22.解:(1)由題意

   (2)由(1)知:(x>0)

h(x)=px2-2x+p.要使g(x)在(0,+∞)為增函數(shù),只需h(x)在(0,+∞)滿足:h(x)≥0恒成立。即px2-2x+p≥0。

上恒成立

所以

   (3)證明:①即證 lnxx+1≤0  (x>0),

設(shè).

x∈(0,1)時,k′(x)>0,∴k(x)為單調(diào)遞增函數(shù);

x∈(1,∞)時,k′(x)<0,∴k(x)為單調(diào)遞減函數(shù);

x=1為k(x)的極大值點,

∴k(x)≤k(1)=0.

即lnxx+1≤0,∴l(xiāng)nxx-1.

②由①知lnxx-1,又x>0,

 

 


同步練習(xí)冊答案