已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6ACAABB   7―12DCDACD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.40  15.    16.6

20090411

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:設(shè)等差數(shù)列

       由成等比數(shù)列,

       得

       即

       得(舍去)。

       故

       所以   6分

   (II)又

       則

       又

       故的等差數(shù)列。

       所以   12分

19.(本小題滿分12分)

       解:設(shè)事件

       則

   (I)設(shè)“賽完兩局比賽結(jié)束”為事件C,則

       則

       即

      

       因為

       所以

       因為   6分

   (II)設(shè)“賽完四局比賽結(jié)束且乙比甲多2分”為事件D,

       則

       即

      

      

       =     12分

20.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

<thead id="y1ncl"><meter id="y1ncl"></meter></thead>
    <nobr id="y1ncl"><tt id="y1ncl"></tt></nobr>

      <b id="y1ncl"></b>
    1. <nobr id="y1ncl"></nobr><dfn id="y1ncl"></dfn>
          <div id="y1ncl"></div>

                 同上,   8分

                

                

                

                 設(shè)面OAC的法向量為

                

                 得

                 故

                 所以二面角O―AC―B的大小為   12分

           

           

          21.(本小題滿分12分)

             (I)解:當

                 故   1分

                 因為   當

                 當

                 故上單調(diào)遞減。   5分

             (II)解:由題意知上恒成立,

                 即上恒成立。   7分

                 令

                 因為   9分       

                 故上恒成立等價于

                    11分

                 解得   12分

          22.(本小題滿分12分)

                 解:依題意設(shè)拋物線方程為

                 直線

                 則的方程為

                

                 因為

                 即

                 故

             (I)若

                

                 故點B的坐標為

                 所以直線   5分

             (II)聯(lián)立

                

                 則

                 又   7分

                 故   9分

                 因為成等差數(shù)列,

                 所以

                 故

                 將代入上式得

                 。   12分

           

           

           

           

           


          同步練習冊答案