題目列表(包括答案和解析)
在平面直角坐標系中,已知雙曲線的焦點到一條漸近線的距離為4,若漸近線恰好是曲線在原點處的切線,則雙曲線的標準方程為 ▲ .
x2 |
a2 |
y2 |
b2 |
1.D 2.D 3.D 4.D 5.B 6.C 7.C 8.C 9.B 1 0.C 11.A 12.B
13. 14. 15. 16.
提示:
1.D 由,得,所以焦點
2.D 解不等式,得,∴,
∴,故
3.D (法一)當時,推導不出,排除C;故選D。
(法二)∵,為非零實數(shù)且滿足,∴,即,故選D。
4.D ,,∴,∴.
5.B 兩式相減得,∴,∴.
6.C 令,解得,∴.
7.C 可知四面體的外接球以的中點為球心,故
8.C 由已知有或解得或
9.B ,∴,又,
∴切線的方程為,即,∴點到直線的距離為期不遠
10.C 對于A、D,與,不是對稱軸;對于B,電不是偶函數(shù);對于C,符合要求.
11.A 由題意知直線的方程為,當時,,即點是漸近線上一點,∴,即離心率.
12. B 應先求出2人坐進20個座位的排法。排除2人相鄰的情況即可。
共有11+12=23個座位,去掉前排中間3個不能入坐的座位,還有20個座位,則2人坐入20個座位的排法有種,排除①兩人坐前排相鄰的12種情況;②兩人坐后排相鄰的22種情況,∴不同排法的種數(shù)有(種).
13. 展開式中的的系數(shù)是,
14.800 由圖知成績在中的頻率為,所以在10000人中成績在中的人有人。
15. 設棱長均為2,由圖知與到的距離相等,而到平面的距離為,故所成角的正弦值為。
16. 求圓面積的最大值,即求原點到三條直線,和距離的最小值,由于三個距離分別為、、,最小值為,所以圓面積的最大值為。
17.解:(1)由,得,…2分
∴,∵,∴,∴
…………………………………………………………………………4分
∵,∴………………………………………5分
(2)∵,∴,
∴
……………8分
∵,∴,∴……………10分
18.解:(1)證明:延長、相交于點,連結。
∵,且,∴為的中點,為的中點。
∵為的中點,由三角形中位線定理,有
∵平面,平面,∴平面…………………6分
(2)(法一)由(1)知平面平面。
∵為的中點,∴取的中點,則有。
∵,∴
∵平面,∴為在平面上的射影,∴
∴為平面與平面所成二面角的平面角。……………………10分
∵在中,,,
∴,即平面與平面所成二面角的大小為!12分
(法二)如圖,∵平面,,
∴平面,
取的中點為坐標原點,以過且平行的直線為軸,所在的直線為 軸,所在的直線為軸,建立空間直角坐標系。
設,則,,,,
∴,
設為平面的法向量,
則
取,可得
又平面的法向量為,設與所成的角為,………………… 8分
則,
由圖可知平面與平面所成二面角為銳角。
∴平面與平面所成二面角的大小為………………………………12分
19.解:(1)由已知得,∵,∴
∵、是方程的兩個根,∴
∴,…………………………………………6分
(2)設兩臺電器無故障使用時間分別為、,則銷售利潤總和為200元有三種情況:
,;,;,,
其概率分別為;;
∴銷售兩臺這種家用電器的銷售利潤總和為200元的概率為
………………………12分
20.解:(1)∵,且的圖象經過點,,
∴∴
∴
由圖象可知函數(shù)在上單調遞減,在上單調遞增,在 上單調遞減,
∴,解得,
∴………………………6分
(2)要使對都有恒成立,只需即可。
由(1)可知函數(shù)在上單調遞減,在上單調遞增,
在上單調遞減,且,,、
∴,
,
故所求的實數(shù)的取值范圍為………………………12分
21.解:(1)∵,∴,∴
又∵,∴數(shù)列是首項為1,公比為3的等比數(shù)列,。
當時,(),∴
(2),
當時,;
當時,,①
②
①-②得:
∴
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com