令g(x)=x-2lnx,則 查看更多

 

題目列表(包括答案和解析)

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關(guān)于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示.令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是(    )

A.若a<0,則函數(shù)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)

B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實(shí)根

C.若a≠0,b=2,則方程g(x)=0有兩個(gè)實(shí)根

D.若a≥1,b<2,則方程g(x)=0有三個(gè)實(shí)根

查看答案和解析>>

記滿(mǎn)足下列條件的函數(shù)f(x)的集合為M,當(dāng)|x1|≤1,|x2|≤1時(shí),|f(x1)-f(x2)|≤4|x1-x2|,又令g(x)=x2+2x-1,則g(x)與M的關(guān)系是(    )

A.g(x)M                  B.g(x)∈M

C.g(x)M                  D.不能確定

查看答案和解析>>

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖像如圖所示,令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是(    )

A.若a<0,則函數(shù)g(x)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng)

B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實(shí)根

C.若a≠0,b=2,則方程g(x)=0有兩個(gè)實(shí)根

D.若a≥1,b<2,則方程g(x)=0有三個(gè)實(shí)根

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿(mǎn)足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>


同步練習(xí)冊(cè)答案