設(shè).函數(shù)有意義, 實(shí)數(shù)m取值范圍 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函數(shù).
(Ⅰ)求正實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=x2+2x,在使g(x)≥M對(duì)定義域內(nèi)的任意x值恒成立的所有常數(shù)M中,我們把M的最大值M=-1叫做f(x)=x2+2x的下確界,若函數(shù)f(x)=
1-x
ax
+lnx
的定義域?yàn)閇1,+∞),根據(jù)所給函數(shù)g(x)的下確界的定義,求出當(dāng)a=1時(shí)函數(shù)f(x)的下確界.
(Ⅲ)設(shè)b>0,a>1,求證:ln
a+b
b
1
a+b
.

查看答案和解析>>

函數(shù)是[1,+∞)上的增函數(shù).
(Ⅰ)求正實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=x2+2x,在使g(x)≥M對(duì)定義域內(nèi)的任意x值恒成立的所有常數(shù)M中,我們把M的最大值M=-1叫做f(x)=x2+2x的下確界,若函數(shù)的定義域?yàn)閇1,+∞),根據(jù)所給函數(shù)g(x)的下確界的定義,求出當(dāng)a=1時(shí)函數(shù)f(x)的下確界.
(Ⅲ)設(shè)b>0,a>1,求證:

查看答案和解析>>

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

14、設(shè)函數(shù)f(x)的定義域?yàn)镈.若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M.有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),如果定義域是[-1,+∞)的函數(shù)f(x)=x2[-1,+∞)上的m高調(diào)函數(shù).求實(shí)數(shù)m的取值范圍

查看答案和解析>>

設(shè)函數(shù)f(x)=ax3+bx+c是定義在R上的奇函數(shù),且函數(shù)f(x)的圖象在x=1處的切線方程為y=3x+2.
(1)求a,b,c的值;
(2)若對(duì)任意x∈(0,1]都有f(x)≤
kx
成立,求實(shí)數(shù)k的取值范圍;
(3)若對(duì)任意x∈(0,3]都有|f(x)-mx|≤16成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

 

1. -               2.             3.             4.

5.                6.     7. ④             8.

9.    10. (2,4]       11. (28,44)      12.

13. 5                14. m>

 

15.(1)【證明】∵△PAB中, D為AB中點(diǎn),M為PB中點(diǎn),∴

∵DM平面,PA平面,∴平面            ……3分

(2)【證明】∵D是AB的中點(diǎn),△PDB是正三角形,AB=20,

文本框:                  ……4分

∴△PAB是直角三角形,且AP⊥PB,……5分

又∵AP⊥PC,……6分

∴AP⊥平面PBC.∴AP⊥BC.……8分

又∵AC⊥BC, AP∩AC=A,∴BC⊥平面PAC.……9分

∴平面PAC⊥平面ABC.……10分

(3)【解】由(1)知,由(2)知PA⊥平面PBC, 

∴DM⊥平面PBC.……11分

∵正三角形PDB中易求得

 ……13分

……14分

 

16.解:(Ⅰ)∵

   ………………………………………………………………4分

又∵   ……………………………………6分

即 

∴ymax=5,  ymin=3   …………………………………………………………………8分

(Ⅱ)∵  ……………………………10分

又∵P為q的充分條件 ∴   ………………………………………13分 

解得  3<m<5    ……………………………………………………………………14分

 

17. 解:(1)由題意知,需加工G型裝置4000個(gè),加工H型裝置3000個(gè),所用工人分別為x人,(216-x)人.

gx)=,hx)=

gx)=,hx)=(0<x<216,xN*). ……………………4分

(2)gx)-hx)==.

∵0<x<216,

∴216-x>0.

當(dāng)0<x≤86時(shí),432-5x>0,gx)-hx)>0,gx)>hx);

當(dāng)87≤x<216時(shí),432-5x<0,gx)-hx)<0,gx)<hx).

fx)= ……………………8分

(3)完成總?cè)蝿?wù)所用時(shí)間最少即求fx)的最小值.

當(dāng)0<x≤86時(shí),fx)遞減,

fx)≥f(86)==.

fxmin=f(86),此時(shí)216-x=130.

當(dāng)87≤x<216時(shí),fx)遞增,

fx)≥f(87)==.

fxmin=f(87),此時(shí)216-x=129.

fxmin=f(86)=f(87)=.

∴加工G型裝置,H型裝置的人數(shù)分別為86、130或87、129……………………14分

18. (Ⅰ)由題設(shè)知

由于,則有,所以點(diǎn)的坐標(biāo)為……..2分

所在直線方程為…………3分

所以坐標(biāo)原點(diǎn)到直線的距離為

,所以  解得: …………5分

所求橢圓的方程為…………6分

(Ⅱ)由題意可知直線的斜率存在,設(shè)直線斜率為

直線的方程為,則有…………8分

設(shè),由于、三點(diǎn)共線,且

根據(jù)題意得,解得…………14分

在橢圓上,故

解得,綜上,直線的斜率為     …………16分

19. 解:(1)由已知,,),

,),且

∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.

(2)∵,∴,要使恒成立,

恒成立,

恒成立,

恒成立.

(?)當(dāng)為奇數(shù)時(shí),即恒成立,

當(dāng)且僅當(dāng)時(shí),有最小值為1,

(?)當(dāng)為偶數(shù)時(shí),即恒成立,

當(dāng)且僅當(dāng)時(shí),有最大值

,又為非零整數(shù),則

綜上所述,存在,使得對(duì)任意,都有

20.解:(I)                            2分

得,

,列出下表

0

0

+

0

遞減

極小值

遞增

極大值

遞減

所以,當(dāng)時(shí),取得極小值,極小值等于;

當(dāng)時(shí),取得極大值,極大值等于;                 6分

(II)設(shè)函數(shù)、,    不妨設(shè)

   

      (注:若直接用來證明至少扣1分)                           10分

(III)時(shí),

                                                                16分

 

 

 

 


同步練習(xí)冊答案