17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題

<p id="wauat"><optgroup id="wauat"><meter id="wauat"></meter></optgroup></p>
    1. 20080917

      二、填空題

      13.1    14.(-1,3)    15.5    16.②③④

      三、解答題

      17.解:(Ⅰ)

            ………………4分

        

        當(dāng)   ……2分

      (Ⅱ)  ………3分

        又

               ………………3分

      18.解:(Ⅰ)乙在第3次獨(dú)立地射時(shí)(每次射擊相互獨(dú)立)才首次命中10環(huán)的概率為

        

      (Ⅱ)甲、乙兩名運(yùn)動(dòng)員各自獨(dú)立射擊1次,兩人中恰有一人命中10環(huán)的概率為

        

      19.解:(Ⅰ)以D為坐標(biāo)原點(diǎn),DA所在的直線為x軸、DC所在的直線為y軸、DP所在的直線為z軸,建立如圖所示的空間直角坐標(biāo)系D-xyz.

        則A(1,0,0),B(1,1,0),C(0,1,0),

        P(0,0,1)

        

        

         (Ⅱ)

        

        

        、

        

        

        解法二:

        設(shè)平面BCE的法向量為

        由

                   ………………2分

        設(shè)平面FCE的法向量為

        由

        

             …………2分

      20.(Ⅰ)由題意,得

        

         (Ⅱ)①當(dāng)

        

      ②當(dāng)

        令

        

      21.解:(Ⅰ)設(shè)橢圓方程為

        由題意,得

      所求橢圓方程;  ……………5分

      (Ⅱ)設(shè)拋物線C的方程為.

        由.

        拋物線C的方程為

        

      ,設(shè)、,則有

      ,.

        

        代入直線

        

      22.解:(Ⅰ)

        

      (Ⅱ)記方程①:方程②:

        分別研究方程①和方程②的根的情況:

         (1)方程①有且僅有一個(gè)實(shí)數(shù)根方程①?zèng)]有實(shí)數(shù)根

         (2)方程②有且僅有兩個(gè)不相同的實(shí)數(shù)根,即方程有兩個(gè)不相同的非正實(shí)數(shù)根.

        

        方程②有且僅有一個(gè)不相同的實(shí)數(shù)根,即方程有且僅有一個(gè)蜚 正實(shí)數(shù)根.

        

        綜上可知:當(dāng)方程有三個(gè)不相同的實(shí)數(shù)根時(shí),

        當(dāng)方程有且僅有兩個(gè)不相同的實(shí)數(shù)根時(shí),

        符合題意的實(shí)數(shù)取值的集合為

       


      同步練習(xí)冊(cè)答案