17. 查看更多

 

題目列表(包括答案和解析)

(本題滿分13分)已知f(x)= (x<-2),f(x)的反函數(shù)為g(x),點A(an, )在曲線y=g(x) (n??N*)上,且a1=1。

(Ⅰ)求yg(x)的表達式;

(Ⅱ)證明數(shù)列{}為等差數(shù)列。

查看答案和解析>>

(本題滿分13分)

已知各項均為正數(shù)的等差數(shù)列,其前n項和S滿足10S = a  + 5a + 6;等比數(shù)列滿足b = ab = a,b = a;數(shù)列滿足.(1)求數(shù)列的通項公式;

(2)求數(shù)列的前n項和T

查看答案和解析>>

(本題滿分13分) 已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、 三點.  (1)求橢圓的方程:(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;(3)若直線與橢圓交于兩點,證明直線與直線的交點在定直線上并求該直線的方程.

查看答案和解析>>

(本題滿分13分)已知數(shù)列{a}對任意的n∈N,n≥2時有a=3a+2,S=18.(1)計算aa、a、a、a的值;(2)若數(shù)列{T}有T=an+1-a,求T的表達式;(3)求數(shù)列{a}的通項公式.

查看答案和解析>>

(本題滿分13分)已知數(shù)列{an}的前n項和為Sn,且an=(3n+Sn)對一切正整數(shù)n成立

(I)證明:數(shù)列{3+an}是等比數(shù)列,并求出數(shù)列{an}的通項公式;

(II)設,求數(shù)列的前n項和Bn;

查看答案和解析>>

一、選擇題(本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個符合題目要求的)

題號

1

2

3

4

5

6

7

8

答案

B

D

C

C

A

C

C

A

二、填空題(本大題共有6個小題,每小題5分,共30分;請把答案填在相應的位置)

題號

9

10

11

12

13

14

答案

 

8,70

三、解答題

15.(本題滿分13分)

解:(1)

       

(2)

        

時,此時為直角三角形;

時,為直角三角形。

16. (本題滿分13分)

解:(1)向上的點數(shù)互不相同的概率為

(2)向上的點數(shù)之和為6的結果有

共10中情況,

所以

(3)因為每次拋擲骰子,向上的點數(shù)為奇數(shù)的概率為

所以根據(jù)獨立重復試驗概率公式得

17.(本題滿分13分)

    解:解答一:(1)在菱形中,連接是等邊三角形。

                  

(2)

                  

                  

              (3)取中點,連結

                  

     解法二:(1)同解法一;

            (2)過點平行線交,以點為坐標原點,建立如圖的坐標系

                               

                   二面角的大小為

     (3)由已知,可得點

         

          即異面直線所成角的余弦值為

18.(本題滿分13分)

解:(1)將函數(shù)的圖象向右平移一個單位,得到函數(shù)的圖象,

        函數(shù)的圖象關于點(0,0)對稱,即函數(shù)是奇函數(shù),

       

       

        由題意得:

        所以

   (2)由(1)可得

        故設所求兩點為

       

        滿足條件的兩點的坐標為:

19. (本題滿分14分)

解:(1)由,

由知,拋物線C在點N處是切線的斜率

因此,拋物線C在點N處的切線與直線AB平行。

(2)假設存在實數(shù),使得,則

由M是線段AB的中點。

軸,知

 

 

解得(舍去)

存在實數(shù),使得

20. (本題滿分14分)

   解:(1)由題意得

      

(2)正整數(shù)的前項和

解之得

時,

以上各式累加,得

(3)在(1)和(2)的條件下,

時,設,由是數(shù)列的前項和

綜上

因為恒成立,所以小于的最小值,顯然的最小值在時取得,即

滿足的條件是

解得

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案