題目列表(包括答案和解析)
(本小題滿分14分)
從某學(xué)校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組、第二組;…第八組,右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)估計這所學(xué)校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,求滿足的事件概率.
(本小題滿分14分)
從某學(xué)校高一年級名學(xué)生中隨機抽取名測量身高,據(jù)測量被抽取的學(xué)生的身高全部介于和之間,將測量結(jié)果按如下方式分成八組:第一組.第二組;…第八組,右圖
是按上述分組方法得到的條形圖.
(1)根據(jù)已知條件填寫下面表格:
組 別 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
樣本數(shù) |
|
|
|
|
|
|
|
|
(2)估計這所學(xué)校高一年級名學(xué)生中身高在以上(含)的人數(shù);
(3)在樣本中,若第二組有人為男生,其余為女生,第七組有人為女生,其余為男生,在第二組和第七組中各選一名同學(xué)組成實驗小組,問:實驗小組中恰為一男一女的概率是多少?
(本小題滿分14分)
某校高一年級要從3名男生,,和2名女生,中任選3名代表參加學(xué)校的演講比賽.學(xué)
科網(wǎng) (1)求男生被選中的概率;
(2)求男生和女生至少一人被選中的概率.
.(本小題滿分14分)
某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段,…后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)用分層抽樣的方法從成績是80分以上(包括80分)的學(xué)生中抽取了6人進行試卷分析,再從這6個人中選2人作學(xué)習(xí)經(jīng)驗介紹發(fā)言,求選出的2人中至少有1人在的概率.
(本小題滿分14分)
某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,…后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題
(1)求出物理成績低于50分的學(xué)生人數(shù)
(2)估計這次考試物理學(xué)科及格率(60分及以上為及格)
(3)從物理成績不及格的學(xué)生中選兩人,求他們成績至少有一個不低于50分的概率.
一、填空題:(本大題共14小題,每小題5分,共70分.)
1.; 2.; 3.; 4.; 5. 11; 6. 210; 7. 16; 8. 3; 9.; 10.; 11. 7; 12.; 13.; 14.(結(jié)果為,不扣分).
二、解答題:(本大題共6小題,共90分.)
15.(本小題滿分14分)
解:(1)50;0.04;0.10 . ………… 6分
(2)如圖. ……………… 10分
(3)在隨機抽取的名同學(xué)中有名
出線,. …………… 13分
答:在參加的名中大概有63名同學(xué)出線.
………………… 14分
16.(本小題滿分14分)
解:真,則有,即. ------------------4分
真,則有,即. ----------------9分
若、中有且只有一個為真命題,則、一真一假.
①若真、假,則,且,即≤; ----------------11分
②若假、真,則,且,即3≤. ----------------13分
故所求范圍為:≤或3≤. -----------------14分
17.(本小題滿分15分)
解:(1)設(shè)在(1)的條件下方程有實根為事件.
數(shù)對共有對. ------------------2分
若方程有實根,則≥,即. -----------------4分
則使方程有實根的數(shù)對有 共對. ------------------6分
所以方程有實根的概率. ------------------8分
(2)設(shè)在(2)的條件下方程有實根為事件.
,所以.
-------------10分
方程有實根對應(yīng)區(qū)域為,. --------------12分
所以方程有實根的概率.------------------15分
18.(本小題滿分15分)
解:(1)易得
.當(dāng)時,在直角中,,故.所以,. ------------4分
所以.
所以異面直線與所成角余弦值為.- -----7分
(2)設(shè)直線與平面所成的角為,平面的一個法向量為.
則由.得可取,-------11分
, ,------------13分
,,. ,.
即直線與平面所成角的取值范圍為. ------------------------15分
19.(本小題滿分16分)
解:(1)設(shè)關(guān)于l的對稱點為,則且,
解得,,即,故直線的方程為.
由,解得. ------------------------5分
(2)因為,根據(jù)橢圓定義,得
,所以.又,所以.所以橢圓的方程為. ------------------------10分
(3)假設(shè)存在兩定點為,使得對于橢圓上任意一點(除長軸兩端點)都有(為定值),即?,將代入并整理得…(*).由題意,(*)式對任意恒成立,所以,解之得 或.
所以有且只有兩定點,使得為定值. ---------------16分
20.(本小題滿分16分)
解:(1). ------------------------2分
因為,令得;令得.所以函數(shù)的增區(qū)間為,減區(qū)間為. ------------------------5分
(2)因為,設(shè),則.----------6分
設(shè)切點為,則切線的斜率為,切線方程為即,由點在切線上知,化簡得,即.
所以僅可作一條切線,方程是. ------------------------9分
(3),.
在上恒成立在上的最小值.--------------11分
①當(dāng)時,在上單調(diào)遞減,在上最小值為,不符合題意,故舍去; ------------------------12分
②當(dāng)時,令得.
當(dāng)時,即時,函數(shù)在上遞增,的最小值為;解得. ------------------------13分
當(dāng)時,即時,函數(shù)在上遞減,的最小值為,無解; -----------------------14分
當(dāng)時,即時,函數(shù)在上遞減、在上遞增,所以的最小值為,無解. ------------------------15分
綜上,所求的取值范圍為. ------------------------16分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com