(1)已知.求方程有實(shí)根的概率, 查看更多

 

題目列表(包括答案和解析)

 

已知函數(shù)

(1)若,求方程有實(shí)數(shù)根的概率;

(2)若從區(qū)間內(nèi)任取一個(gè)數(shù),從區(qū)間內(nèi)任取一個(gè)數(shù),求方程有實(shí)數(shù)根的概率。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知關(guān)于x的方程x2+2ax+b=0,其中,,b∈[0,2].

(1)求方程有實(shí)根的概率;

(2)若a∈Z,b∈Z,求方程有實(shí)根的概率.

查看答案和解析>>

已知關(guān)于x的方程x2+2ax+b=0,其中,,b∈[0,2].
(1)求方程有實(shí)根的概率;
(2)若a∈Z,b∈Z,求方程有實(shí)根的概率.

查看答案和解析>>

已知關(guān)于x的方程x2+2ax+b=0,其中,a∈[-
2
,
2
]
,b∈[0,2].
(1)求方程有實(shí)根的概率;
(2)若a∈Z,b∈Z,求方程有實(shí)根的概率.

查看答案和解析>>

已知函數(shù) ).

(1) 若∈{0,1,2,3},b∈{0,1,2,3},求方程有實(shí)數(shù)根的概率;

(2) 若從區(qū)間內(nèi)任取一個(gè)數(shù),從區(qū)間內(nèi)任取一個(gè)數(shù),求方程有實(shí)數(shù)根的概率.

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(結(jié)果為,不扣分).

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)50;0.04;0.10 .    ………… 6分

       (2)如圖.      ……………… 10分

       (3)在隨機(jī)抽取的名同學(xué)中有

出線,.      …………… 13分

答:在參加的名中大概有63名同學(xué)出線.      

   ………………… 14分

16.(本小題滿分14分)

解:真,則有,即.                    ------------------4分

真,則有,即.     ----------------9分

、中有且只有一個(gè)為真命題,則、一真一假.

①若真、假,則,且,即;   ----------------11分

②若假、真,則,且,即3≤.    ----------------13分

故所求范圍為:或3≤.                          -----------------14分

17.(本小題滿分15分)

解:(1)設(shè)在(1)的條件下方程有實(shí)根為事件

數(shù)對(duì)共有對(duì).                                   ------------------2分

若方程有實(shí)根,則,即.                 -----------------4分

則使方程有實(shí)根的數(shù)對(duì)對(duì).                                                         ------------------6分

所以方程有實(shí)根的概率.                          ------------------8分

(2)設(shè)在(2)的條件下方程有實(shí)根為事件

,所以

-------------10分

方程有實(shí)根對(duì)應(yīng)區(qū)域?yàn)?sub>,.          --------------12分

所以方程有實(shí)根的概率.------------------15分

 

18.(本小題滿分15分)

解:(1)易得

.當(dāng)時(shí),在直角中,,故.所以,.     ------------4分

所以

所以異面直線所成角余弦值為.- -----7分

(2)設(shè)直線與平面所成的角為,平面的一個(gè)法向量為.

則由.得可取,-------11分

,------------13分

,,

即直線與平面所成角的取值范圍為.         ------------------------15分

19.(本小題滿分16分)

解:(1)設(shè)關(guān)于l的對(duì)稱點(diǎn)為,則,

解得,,即,故直線的方程為

,解得.                       ------------------------5分

(2)因?yàn)?sub>,根據(jù)橢圓定義,得

,所以.又,所以.所以橢圓的方程為.                                        ------------------------10分

(3)假設(shè)存在兩定點(diǎn)為,使得對(duì)于橢圓上任意一點(diǎn)(除長(zhǎng)軸兩端點(diǎn))都有為定值),即?,將代入并整理得…(*).由題意,(*)式對(duì)任意恒成立,所以,解之得

所以有且只有兩定點(diǎn),使得為定值.   ---------------16分

 

 

 

20.(本小題滿分16分)

解:(1).                        ------------------------2分

因?yàn)?sub>,令;令.所以函數(shù)的增區(qū)間為,減區(qū)間為.                                           ------------------------5分

(2)因?yàn)?sub>,設(shè),則.----------6分

設(shè)切點(diǎn)為,則切線的斜率為,切線方程為,由點(diǎn)在切線上知,化簡(jiǎn)得,即

所以僅可作一條切線,方程是.              ------------------------9分

(3),.                  

上恒成立上的最小值.--------------11分

①當(dāng)時(shí),上單調(diào)遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

②當(dāng)時(shí),令

當(dāng)時(shí),即時(shí),函數(shù)在上遞增,的最小值為;解得.                                       ------------------------13分

當(dāng)時(shí),即時(shí),函數(shù)在上遞減,的最小值為,無(wú)解;                                                -----------------------14分

當(dāng)時(shí),即時(shí),函數(shù)在上遞減、在上遞增,所以的最小值為,無(wú)解.                ------------------------15分

綜上,所求的取值范圍為.                     ------------------------16分

 

 

 

 

 


同步練習(xí)冊(cè)答案