(1)求點的坐標, 查看更多

 

題目列表(包括答案和解析)





的坐標;
(2)已知A,B求點C使;
(3)已知橢圓兩焦點F1F2,離心率e=0.8。求此橢圓長軸上
兩頂點的坐標。

查看答案和解析>>

動點的坐標在其運動過程中

總滿足關系式.

(1)點的軌跡是什么曲線?請寫出它的標準方程;

(2)已知直線的軌跡交于A、B兩點,且OA⊥OB(O為原點),求 的值.

 

查看答案和解析>>

動點的坐標在其運動過程中
總滿足關系式.
(1)點的軌跡是什么曲線?請寫出它的標準方程;
(2)已知直線的軌跡交于A、B兩點,且OA⊥OB(O為原點),求 的值.

查看答案和解析>>

坐標系與參數方程已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是:
x=
2
2
t+m
y=
2
2
t
(t是參數).
(1)將曲線C的極坐標方程和直線l參數方程轉化為普通方程;
(2)若直線l與曲線C相交于A、B兩點,且|AB|=
14
,試求實數m值.

查看答案和解析>>

坐標系與參數方程:
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線c1的極坐標方程為:5p2-3p2cos2θ-8=0,直線?的參數方程為:
x=1-
3
t
y=t
(t為參數).
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線c1與?交于M,N兩點,求|PM|•|PN|的值.

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(結果為,不扣分).

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)50;0.04;0.10 .    ………… 6分

       (2)如圖.      ……………… 10分

       (3)在隨機抽取的名同學中有

出線,.      …………… 13分

答:在參加的名中大概有63名同學出線.      

   ………………… 14分

16.(本小題滿分14分)

解:真,則有,即.                    ------------------4分

真,則有,即.     ----------------9分

、中有且只有一個為真命題,則、一真一假.

①若真、假,則,且,即;   ----------------11分

②若假、真,則,且,即3≤.    ----------------13分

故所求范圍為:或3≤.                          -----------------14分

17.(本小題滿分15分)

解:(1)設在(1)的條件下方程有實根為事件

數對共有對.                                   ------------------2分

若方程有實根,則,即.                 -----------------4分

則使方程有實根的數對對.                                                         ------------------6分

所以方程有實根的概率.                          ------------------8分

(2)設在(2)的條件下方程有實根為事件

,所以

-------------10分

方程有實根對應區(qū)域為,.          --------------12分

所以方程有實根的概率.------------------15分

 

18.(本小題滿分15分)

解:(1)易得

.當時,在直角中,,故.所以,.     ------------4分

所以

所以異面直線所成角余弦值為.- -----7分

(2)設直線與平面所成的角為,平面的一個法向量為.

則由.得可取,-------11分

, ,------------13分

,

即直線與平面所成角的取值范圍為.         ------------------------15分

19.(本小題滿分16分)

解:(1)設關于l的對稱點為,則,

解得,,即,故直線的方程為

,解得.                       ------------------------5分

(2)因為,根據橢圓定義,得

,所以.又,所以.所以橢圓的方程為.                                        ------------------------10分

(3)假設存在兩定點為,使得對于橢圓上任意一點(除長軸兩端點)都有為定值),即?,將代入并整理得…(*).由題意,(*)式對任意恒成立,所以,解之得

所以有且只有兩定點,使得為定值.   ---------------16分

 

 

 

20.(本小題滿分16分)

解:(1).                        ------------------------2分

因為,令;令.所以函數的增區(qū)間為,減區(qū)間為.                                           ------------------------5分

(2)因為,設,則.----------6分

設切點為,則切線的斜率為,切線方程為,由點在切線上知,化簡得,即

所以僅可作一條切線,方程是.              ------------------------9分

(3),.                  

上恒成立上的最小值.--------------11分

①當時,上單調遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

②當時,令

時,即時,函數在上遞增,的最小值為;解得.                                       ------------------------13分

時,即時,函數在上遞減,的最小值為,無解;                                                -----------------------14分

時,即時,函數在上遞減、在上遞增,所以的最小值為,無解.                ------------------------15分

綜上,所求的取值范圍為.                     ------------------------16分

 

 

 

 

 


同步練習冊答案