是R上可導(dǎo)函數(shù). 時(shí).下列結(jié)論正確的為 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)是R上可導(dǎo)的偶函數(shù),且滿足f(x+
5
2
)=-f(x)
,則曲線y=f(x)在x=5處的切線的斜率為( 。

查看答案和解析>>

對(duì)于R上可導(dǎo)函數(shù)f(x),若滿足(1-x)•f′(x)≤0,則下列結(jié)論正確的是( 。

查看答案和解析>>

已知函數(shù)f(x),g(x)是定義在R上可導(dǎo)函數(shù),滿足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(x)>0,對(duì)a≤c≤b時(shí).下列式子正確的是( 。

查看答案和解析>>

在R上可導(dǎo)函數(shù)當(dāng)時(shí)取得極大值。當(dāng)時(shí)取得極小值,則的取值范圍是(  )

A.    B.    C.    D.

查看答案和解析>>

已知函數(shù)是定義在R上可導(dǎo)函數(shù),滿足,且,對(duì)時(shí)。下列式子正確的是(   )

A.              B.

C.              D.

 

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ① ④

17.1) ……2分

     

當(dāng)                         ……4分 

,對(duì)稱中心           ……6分

(2)                         ……8分

                                 ……10分

,                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

,

,

評(píng)分:下面5個(gè)式子各1分,列表和期望計(jì)算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)設(shè)    ……8分

    當(dāng)  

      

    當(dāng)     

    所以,當(dāng)

的最小值為……………………………… 12分

 

20.解法1:

(1)過(guò)S作,,連

  

        ……4分

(2),∴是平行四邊形

故平面

過(guò)A作,,連

為平面

二面角平面角,而

應(yīng)用等面積:,

,

故題中二面角為                         ……4分

(3)∵距離為距離

又∵,,∴平面,∴平面

∴平面平面,只需B作SE連線BO1,BO1

設(shè)線面角為,,

,故線面角為          ……4分

解法2:

(1)同上

(2)建立直角坐標(biāo)系

平面SDC法向量為,

,,

設(shè)平面SAD法向量

,取,

  ∴ 

∴二面角為

(3)設(shè)線面角為,

 

21.(1)

時(shí),        

                   

……                                 

             

     

                        

          

(3分)

時(shí),

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)設(shè),,

,∴  (3分)

所以P點(diǎn)的軌跡是以為焦點(diǎn),實(shí)半軸長(zhǎng)為1的雙曲線的右支(除頂點(diǎn))。(4分)

(2)設(shè)PE斜率為,PR斜率為

PE:    PR:

,

  …………(6分)

由PF和園相切得:,PR和園相切得:

故:兩解

故有:

,  ……(8分)

又∵,∴,∴  (11分)

設(shè),

,

   (14分)

 

 


同步練習(xí)冊(cè)答案