D.若 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.   14.    15.1:2    16.①②⑤  

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

    • <button id="8c8cs"></button>
      • ,

        .……9分

        在△ACD中,由正弦定理得:

        <small id="8c8cs"><input id="8c8cs"></input></small>

          19.(本小題滿分12分)

          解:(1)連結(jié)OP,∵Q為切點,PQOQ,

          由勾股定理有,

          又由已知

          即: 

          化簡得 …………3分

             (2)由,得

          …………6分

          故當(dāng)時,線段PQ長取最小值 …………7分

             (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

          即R且R

          故當(dāng)時,,此時b=―2a+3=

          得半徑最最小值時⊙P的方程為…………12分

          20.(本小題滿分12分)

          解:(I)取PD的中點G,連結(jié)FG、AG,則

          <fieldset id="8c8cs"><center id="8c8cs"></center></fieldset>
                • <abbr id="8c8cs"><tbody id="8c8cs"></tbody></abbr>
                    <li id="8c8cs"></li>

                    又E為AB的中點

                    ∴四邊形AEFG為平行四邊形  …………3分

                    ∴EF∥AG

                    又AG平面PAD

                    ∴EF∥平面PAD …………5分

                       (II)∵PA⊥平面ABCD

                    ∴PA⊥AE

                    又矩形ABCD中AE⊥AD

                    ∴AE⊥平面PAD

                    ∴AE⊥AG

                    ∴AE⊥EF

                    又AE//CD

                    ∴ED⊥CD  …………8分

                    又∵PA=AD

                    ∴在Rt△PAE和Rt△CBE中PE=CE

                    ∵D為PC的中點

                    ∴EF⊥PC …………10分

                    又PC∩CD=C

                    ∴EF⊥平面PCD

                    又EF平面PEC

                    ∴平面PEC⊥平面PCD  …………12分

                     

                     

                    22.(本小題滿分12分)

                    解:(I)

                    單調(diào)遞增。 …………2分

                    ,不等式無解;

                    ;

                    所以  …………6分

                       (II), …………8分

                                             ……………11分

                    因為對一切……12分

                    22.(本小題滿分14分)

                    解:(I)

                       (II)…………7分

                       (III)令上是增函數(shù)

                     

                     

                     


                    同步練習(xí)冊答案