20. 如圖.四棱錐P―ABCD.底面ABCD是矩形.PA⊥平面ABCD.PA=AD.點E.F分別是AB.PC的中點. (I)求證:EF//平面PAD, (II)求證:平面PEC⊥平面PCD. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點。                                    

                                            

(Ⅰ)求證:ACSD;        

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E,        使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

(本小題滿分12分)如圖,四棱錐中,側(cè)面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是面積為的菱形,為銳角,M為PB的中點。

(1)求證

(2)求二面角的大小

(3)求P到平面的距離

查看答案和解析>>

(本小題滿分12分)

如圖,四棱錐P—ABCD中,平面PAD⊥平面ABCD,AB//CD,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4。

   (I)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD。

   (II)求四棱錐P—ABCD的體積。

查看答案和解析>>

(本小題滿分12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點,過E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.

(1)       求異面直線AF與BG所成的角的大;

(2)       求平面APB與平面CPD所成的銳二面角的大小.

查看答案和解析>>

(本小題滿分12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點,過E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.

(1)       求異面直線AF與BG所成的角的大小;

(2)       求平面APB與平面CPD所成的銳二面角的大小.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.   14.    15.1:2    16.①②⑤  

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

,

.……9分

在△ACD中,由正弦定理得:

        19.(本小題滿分12分)

        解:(1)連結(jié)OP,∵Q為切點,PQOQ,

        由勾股定理有,

        又由已知

        即: 

        化簡得 …………3分

           (2)由,得

        …………6分

        故當(dāng)時,線段PQ長取最小值 …………7分

           (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

        即R且R

        故當(dāng)時,,此時b=―2a+3=

        得半徑最最小值時⊙P的方程為…………12分

        20.(本小題滿分12分)

        解:(I)取PD的中點G,連結(jié)FG、AG,則

          又E為AB的中點

          ∴四邊形AEFG為平行四邊形  …………3分

          ∴EF∥AG

          又AG平面PAD

          ∴EF∥平面PAD …………5分

             (II)∵PA⊥平面ABCD

          ∴PA⊥AE

          又矩形ABCD中AE⊥AD

          ∴AE⊥平面PAD

          ∴AE⊥AG

          ∴AE⊥EF

          又AE//CD

          ∴ED⊥CD  …………8分

          又∵PA=AD

          ∴在Rt△PAE和Rt△CBE中PE=CE

          ∵D為PC的中點

          ∴EF⊥PC …………10分

          又PC∩CD=C

          ∴EF⊥平面PCD

          又EF平面PEC

          ∴平面PEC⊥平面PCD  …………12分

           

           

          22.(本小題滿分12分)

          解:(I)

          單調(diào)遞增。 …………2分

          ,不等式無解;

          ;

          所以  …………6分

             (II), …………8分

                                   ……………11分

          因為對一切……12分

          22.(本小題滿分14分)

          解:(I)

             (II)…………7分

             (III)令上是增函數(shù)

           

           

           


          同步練習(xí)冊答案