A.36萬元 B.31.2萬元 C.30.4萬元 D.24萬元 查看更多

 

題目列表(包括答案和解析)

某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的
2
3
倍,且對每個項目的投資不能低于5萬元,對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為( 。
A.36萬元B.31.2萬元C.30.4萬元D.24萬元

查看答案和解析>>

某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的
2
3
倍,且對每個項目的投資不能低于5萬元,對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為( 。
A.36萬元B.31.2萬元C.30.4萬元D.24萬元

查看答案和解析>>

某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的倍,且對每個項目的投資不能低于5萬元,對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為( )
A.36萬元
B.31.2萬元
C.30.4萬元
D.24萬元

查看答案和解析>>

某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的倍,且對每個項目的投資不能低于5萬元,對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為( )
A.36萬元
B.31.2萬元
C.30.4萬元
D.24萬元

查看答案和解析>>

某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的倍,且對每個項目的投資不能低于5萬元,對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為( )
A.36萬元
B.31.2萬元
C.30.4萬元
D.24萬元

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設∠ACD = α ,∠CDB = β .

,

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結OP,∵Q為切點,PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當時,線段PQ長取最小值 …………7分

   (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

即R且R

故當時,,此時b=―2a+3=

得半徑最最小值時⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)過G作GM//CD交CC1于M,交D1C于O。

    <listing id="6i4pw"></listing>
  • <dl id="6i4pw"></dl>

    <listing id="6i4pw"><form id="6i4pw"></form></listing>

    ∵G為DD1的中點,∴O為D1C的中點

    從而GO

    故四邊形GFBO為平行四邊形…………3分

    ∴GF//BO

    又GF平面BCD1,BO平面BCD1

    ∴GF//平面BCD1。 …………5分

       (II)過A作AH⊥DE于H,

    過H作HN⊥EC于N,連結AN。

    ∵DC⊥平面ADD1A1,∴CD⊥AH。

    又∵AH⊥DE,∴AH⊥平面ECD。

    ∴AH⊥EC。 …………7分

    又HN⊥EC

    ∴EC⊥平面AHN。

    故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

    在Rt△EAD中,∵AD=AE=1,∴AH=

    在Rt△EAC中,∵EA=1,AC=

      …………12分

    21.(本小題滿分12分)

    解:(I)

     

       (II)

       (III)令上是增函數(shù)

    22.(本小題滿分12分)

    解:(I)

    單調遞增。 …………2分

    ,不等式無解;

    ;

    ;

    所以  …………5分

       (II), …………6分

                             …………8分

    因為對一切……10分

       (III)問題等價于證明,

    由(1)可知

                                                       …………12分

    易得

    當且僅當成立。

                                                     …………14分

     

     

     


    同步練習冊答案