題目列表(包括答案和解析)
△ABC中,銳角的對邊長等于2,向量,向量.
(Ⅰ)若向量,求銳角A的大;
(Ⅱ)在(Ⅰ)的條件下,求△ABC面積的最大值.
已知若,且f(x)圖像上相鄰的兩個對稱軸的距離是
(1)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
(2)銳角△ABC中,角A、B、C所對的邊分別為a,b,c,若求角C.
已知若,且f(x)圖像上相鄰的兩個對稱軸的距離是
(1)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
(2)銳角△ABC中,角A、B、C所對的邊分別為a,b,c,若求角C.
BC |
AB |
BC |
AB |
AB |
BC |
OA1 |
OA1 |
π |
2 |
1 |
2 |
A1A2 |
A2A3 |
A1A2 |
A2A3 |
OA1 |
π |
2 |
1 |
2 |
An-1An |
lim |
n→∞ |
lim |
n→∞ |
OA1 |
A1A2 |
A2A3 |
OA1 |
A1A2 |
A2A3 |
(本小題滿分12分)
已知角A、B、C是的三個內(nèi)角,若向量,,且.
(1)求的值;
(2)求的最大值
一、選擇題(每小題5分,共40分)
1.D 2.B 3.B 4.B 5.C 6.D 7.C 8.A
解:5.C ,相切時的斜率為
6.D
7.C
8.A 原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,
顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,
即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0
二、填空題(每小題5分,共30分)
9.
10. 位執(zhí)“一般”對應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.
11.-192
12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個球(n個白球,k個黑球中取出m個球,可分為:沒有黑球,一個黑球,……,k個黑球等類,故有種取法.
13.5; 14、;
15.16; 由可化為xy =8+x+y, x,y均為正實數(shù)
xy =8+x+y
(當(dāng)且僅當(dāng)x=y等號成立)即xy-2-8可解得,
即xy16故xy的最小值為16.
三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟)。
16、(本題滿分12分)
解:Ⅰ)在中, 且
cosA=,又A是的內(nèi)角,∴A= …………6分
(Ⅱ)由正弦定理,又,故 …………8分
即: 故是以為直角的直角三角形 …………10分
又∵A=, ∴B= …………12分
17.(本題滿分14分)
解:(I)所求x的可能取值為6、7、8、9 …………1分
…………7分
(II)
∴線路通過信息量的數(shù)學(xué)期望
EX ……13分
答:(I)線路信息暢通的概率是. (II)線路通過信息量的數(shù)學(xué)期望是.……14分
18.(本題滿分14分)
解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系, ……1分
|