下列說法中正確的是 A.一個命題的逆命題為真.則它的逆否命題一定為真 B.“a>b 與“a+c>b+c 不等價 C.“a2+b2=0.則a.b全為0 的逆否命題是“若a.b全不為0.則a2+ b2≠0 D.一個命題的否命題為真.則它的逆命題一定為真 查看更多

 

題目列表(包括答案和解析)

下列說法中正確的是


  1. A.
    一個命題的逆命題為真,則它的逆否命題一定為真
  2. B.
    “a>b”與“a+c>b+c”不等價
  3. C.
    “a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
  4. D.
    一個命題的否命題為真,則它的逆命題一定為真

查看答案和解析>>

下列說法中正確的是


  1. A.
    一個命題的逆命題為真,則它的逆否命題一定為真
  2. B.
    “a>b”與“a+c>b+c”不等價
  3. C.
    “若a>0,b>0,則a+b>0”的逆命題是真命題
  4. D.
    一個命題的否命題為真,則它的逆命題一定為真

查看答案和解析>>

下列說法中正確的是
[     ]
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.“a>b”與“a+c>b+c”不等價
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.一個命題的否命題為真,則它的逆命題一定為真

查看答案和解析>>

 下列說法中正確的是                                              (    )

  A.一個命題的逆命題為真,則它的逆否命題一定為真

  B.“a>b”與“a+c>b+c”不等價

  C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+ b2≠0”

  D.一個命題的否命題為真,則它的逆命題一定為真

 

查看答案和解析>>

下列說法中正確的是
[     ]
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.“a>b”與“a+c>b+c”不等價
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0, 則a2+b2≠0”
D.一個命題的否命題為真,則它的逆命題一定為真

查看答案和解析>>

 

一、選擇題(本大題共12小題,每小題4分,共48分)

1.C   2.A   3.D   4.D   5.D   6.B   7.C   8.D   9.C   10.A   11C.   12.C

二、填空題(本大題共4小題,每小題4分,共16分)

13.x∈R,x≤0    14.-15    15.-1    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

  解:(Ⅰ)由已知c=1,則a2-b2=1.

           又3a2=4b 2,

故a2=4,b2=3.

           所求橢圓方程為.……………………………………………6分

(Ⅱ)由

           解得

           又

    于是 ……………………………………12分

18.(本小題滿分12分)

    解:(Ⅰ)因為雙曲線的焦點在y軸上,設(shè)所求雙曲線的方程為

                  由題意,得解得a=2,b=1.

         所求雙曲線的方程為…………………………………………6分

       (Ⅱ)由(Ⅰ)可求得F1(0,-),F(xiàn)2(0,).

點F1,F(xiàn)2關(guān)于直線y=x的對稱點分別為F1′(-,0),F(xiàn)2′(,0),又P(0,2),設(shè)橢圓方程為(m>n>0).

          由橢圓定義,得2m=

因為m2-n2=5,所以n2=4.

所以橢圓的方程為.………………………………………12分

19.(本小題滿分12分)

    證明:如圖,建立空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)AB=2a,BC=2b,PA=2c,

則A(0,0,0),B(2a,0,0),C(2a,2b,0),D(0,2b,0),P(0,0,2c).

∵E為AB的中點,F(xiàn)為PC的中點,

∴E(a,0,0),F(xiàn)(a,b,c).

(Ⅰ)∵=(0,b,c),=(0,0,2c),

=(0,2b,0),

).

、共面.

又∴平面PAD,

∴EF∥平面PAD.……………………4分

(Ⅱ)∵=(-2a,0,0),

?=(-2 a,0,0)?(0,b,c)=0.

∴EFCD.…………………………………………………………8分

(Ⅲ)若∠PDA=45°則有2b=2c,即b=c.

=(0,b,b),=(0,0,2b).

,>=

∴<>=45°.

∵AP平面ABCD,

是平面ABCD的法向量.

∴EF與平面ABCD所成的角為90°-<>=45°.……12分

 

 

 


同步練習(xí)冊答案