題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設,證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、選擇題(本大題共12小題,每小題4分,共48分)
1.C 2.A 3.D 4.D 5.D 6.B 7.C 8.D 9.C 10.A
二、填空題(本大題共4小題,每小題4分,共16分)
13.x∈R,x≤0 14.-15 15.-1 16.
三、解答題(本大題共3小題,每小題12分,共36分)
17.(本小題滿分12分)
解:(Ⅰ)由已知c=1,則a2-b2=1.
又
故a2=4,b2=3.
所求橢圓方程為.……………………………………………6分
(Ⅱ)由
解得
又,
于是 ……………………………………12分
18.(本小題滿分12分)
解:(Ⅰ)因為雙曲線的焦點在y軸上,設所求雙曲線的方程為.
由題意,得解得a=2,b=1.
所求雙曲線的方程為…………………………………………6分
(Ⅱ)由(Ⅰ)可求得F1(0,-),F(xiàn)2(0,).
點F1,F(xiàn)2關于直線y=x的對稱點分別為F1′(-,0),F(xiàn)2′(,0),又P(0,2),設橢圓方程為(m>n>0).
由橢圓定義,得
因為m2-n2=5,所以n2=4.
所以橢圓的方程為.………………………………………12分
19.(本小題滿分12分)
證明:如圖,建立空間直角坐標系A-xyz,設AB=
則A(0,0,0),B(
∵E為AB的中點,F(xiàn)為PC的中點,
∴E(a,0,0),F(xiàn)(a,b,c).
(Ⅰ)∵=(0,b,c),=(0,0,
=(0,2b,0),
∴=(+).
∴與、共面.
又∴平面PAD,
∴EF∥平面PAD.……………………4分
(Ⅱ)∵=(
∴?=(
∴EFCD.…………………………………………………………8分
(Ⅲ)若∠PDA=45°則有2b=
∴=(0,b,b),=(0,0,2b).
∴<,>=
∴<,>=45°.
∵AP平面ABCD,
∴是平面ABCD的法向量.
∴EF與平面ABCD所成的角為90°-<,>=45°.……12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com