①k,θ∈R,l與⊙M相切,②k,θ∈R,l與⊙M有公共點,③θ∈R, k∈R,使l與⊙M相切,④k∈R, θ∈R .使l與⊙M相切解:②④練習:已知p:方程x2+mx+1=0有兩個不等的負根,q:方程4x2+4(m-2)x+1=0無實根.若“p或q 為真.“p且q 為假.求m的取值范圍 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知矩陣M=
2
3
-
1
3
1
3
1
3
,△ABC的頂點為A(0,0),B(2,0),C(1,2),求△ABC在矩陣M-1的變換作用下所得△A′B′C′的面積.
(Ⅱ)極坐標的極點是直角坐標系原點,極軸為X軸正半軸,直線l的參數(shù)方程為
x=x0+
1
2
t
y=
3
2
t

(t為參數(shù)).⊙O的極坐標方程為ρ=2,若直線l與⊙O相切,求實數(shù)x0的值.
(Ⅲ)已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值時a,b,c的值.

查看答案和解析>>

已知雙曲線c:
x2
2
-y2=1
,設(shè)直線l過點A(-3
2
,0)
,
(1)當直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及l(fā)與m的距離;
(2)證明:當k>
2
2
時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為
6

查看答案和解析>>

已知一條曲線C在y軸右邊,C上任意一點到點F1(2,0)的距離減去它到y(tǒng)軸距離的差都是2.
(1)求曲線C的方程;
(2)若雙曲線M:x2-
y2
t
=1(t>0)的一個焦點為F1,另一個焦點為2,過F2的直線l與M相交于A、B兩點,直線l的法向量為
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

(2009•寶山區(qū)一模)已知點F1,F(xiàn)2是雙曲線M:
x2
a2
-
y2
b2
=1
的左右焦點,其漸近線為y=±
3
x
,且右頂點到左焦點的距離為3.
(1)求雙曲線M的方程;
(2)過F2的直線l與M相交于A、B兩點,直線l的法向量為
n
=(k,-1),(k>0)
,且
OA
OB
=0
,求k的值;
(3)在(2)的條件下,若雙曲線M在第四象限的部分存在一點C滿足
OA
+
OB
=m
F2C
,求m的值及△ABC的面積S△ABC

查看答案和解析>>

在平面直角坐標系xOy中,已知定點A(-4,0),B(0,-2),半徑為r的圓M的圓心M在線段AB的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為
3
r

(1)若r為正常數(shù),求圓M的方程;
(2)當r變化時,是否存在定直線l與圓相切?如果存在求出定直線l的方程;如果不存在,請說明理由.

查看答案和解析>>


同步練習冊答案