兩軸上截距相同點定 義平面內到兩個定點F1.F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡a.b.c的關系 查看更多

 

題目列表(包括答案和解析)

橢圓數(shù)學公式(a>b>0)與x軸,y軸的正半輛分別交于A,B兩點,原點O到直線AB的距離為數(shù)學公式,該橢圓的離心率為數(shù)學公式
(Ⅰ)求橢圓的方程;
(Ⅱ)過點數(shù)學公式的直線l與橢圓交于兩個不同的點M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.

查看答案和解析>>

橢圓=1(a>b>0)與x軸,y軸的正半輛分別交于A,B兩點,原點O到直線AB的距離為,該橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的直線l與橢圓交于兩個不同的點M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.

查看答案和解析>>

已知橢圓(a>b>0)的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且|PT|的最小值不小于(a-c).

(1)證明:橢圓上的點到F2的最短距離為a-c;

(2)求橢圓的離心率e的取值范圍;

(3)設橢圓的短半軸長為1,圓F2與x軸的右交點為Q,過點Q作斜率為k(k>0)的直線l與橢圓相交于A、B兩點,若OA⊥OB,求直線l被圓F2截得的弦長S的最大值.

查看答案和解析>>

已知焦點在x軸上的雙曲線C的兩條漸近線過原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑的圓相切,雙曲線C的一個焦點與點A關于直線y=x對稱.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設直線y=mx+1與雙曲線C的左支交于A,B兩點,另一直線l經過M(-2,0)和線段AB的中點,求直線l在y軸上截距b的取值范圍.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左右兩焦點分別為F1,F(xiàn)2,且離心率e=
6
3
;
(1)設E是直線y=x+2與橢圓的一個交點,求|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,1),是否存在斜率為k的直線l與(1)中的橢圓交與不同的兩點A,B,使得點N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案